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Barefoot Rover Technology

* A sensor-infused vehicle wheel which uses machine learning to predict the
status of the world around it.
* Soil hydration level prediction
* Vehicle slip/sink state
* Terrain composition estimation (bedrock, pebbles, sand)
» Surface feature estimation (buried rocks, dunes, gullies)

* High level summarizations made by the wheel computer can be fed into
autonomous vehicle decision making systems.

* Works in no-light conditions, a unique capability in autonomous vehicles.

* Anomaly detection, monitoring for states which haven’t been observed before.
Data prioritized for transmission to operators, which can either define the new
state for the vehicle, or treat the prioritized data as an anomaly. Provides
focus of attention.

Tactile Wheel

* In-situ sensors allows the vehicle to “feel” the world around it. These insights
support autonomous complex decision making in evolving environments.



Two Sensor Modalities
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Software Technical Approach

Rotating sensor-wheel takes
continuous pressure and hydration
measurements as wheel rolls.

L Tactile Wheel 2D (spatial) + 1D (time) dataset = data cube

Three simultaneous approaches:

Pattern Recognition Model-based Inference Image Time Series
 Computation: Moderate e Computation: Light-Mod * Computation: Heavy
» Sharpness, balance, * Retrieves sand grain size, * Slip & Skid detection, soil
terrain classification, hydration level, etc. properties
rock ID * Tech: Established * Tech: Adapt existing
* Tech: Texturecam, tuned literature methods hyperspectral methods /
thresholds Deep Learning CNN’s
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Data Collection for

ta

Training data is collected to build machine
learning models, each capable of identifying
the soil / hydration / surface feature they were
trained on.

New training models are built to enable new
capabilities.
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Pressure Grid Extractions

Images extracted from the pressure grid sensor data can
capture a variety of terrain and engineering features.

Flat Terrain Smooth Dunes

imu matched pressure, time bin 0.1, imu mean 5, regprop_terrain_smoodunes_none_bst110_00.0_20180614_06

imu matched pressure, time bin 0.1, imu mean 5, regprop_flatlvI_fast_full_bst110_00.0
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Experimental Dashboard

Focus of attention data for operators.

Data Collection Dashboard

t = 0, contact = 69, UTC_jpg = 1530009966.271857

. Video cameras

«— Pressure grid imprint
«— Extracted image
|

«— Computed and
actual metrics:
F i — contact area, slip,
sink, rock
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Wheel Data Determines Slip & Sink Rates

Slip predicted with ~6% accuracy. 4%
Improvement on visual systems and
works in no-light environments.

Sink estimation is a model-based slip0.385_terrain_flatlvl 20_mins30_00.0 20181119 01
. . slip %, error: fid 0.030, pot 0.016
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Rock / Surface Pattern Detection

Surface patterns and terrain

Likelihood of Rock classification:

1 Elat — Are you.drlvmg on dupes, pebbles,
Rock gullies or something else?
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Hydration Pred

Successful hydration prediction
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Summary

In-wheel sensors, paired with machine learning, can provide unique data extractions for autonomous
vehicle applications.
Pressure / EM Induction sensing provide insights about terrain composition and hydration in no-light
environments, further enabling autonomous vehicle traversibility.
Supplemental wheel-infused sensors enable autonomous search/mapping robots to perform tasks not
suited for humans.

* Example: Neutron spectroscopy for autonomous landmine detection.

Detection of “JPL” Written in the Sand
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