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ines and 0,

* Liquid brines on modern and geologically
recent Mars can contain very large
amounts of dissolved O,—sourced either
from the atmosphere or radiolysis.

 The amounts are orders of magnitude
greater than aerobes need on the Earth
for breathing.

e We see evidence of this in the rock
record.

* The potential for aerobic life on Mars?
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Brines and 0,: Solubility as a function of temperature

MARS:

Oxygen solubility in water and perchlorate brine
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Brines and 0,: Implications for aerobic life

Earth today
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‘Brines and 0,: TODAY in 3D

Annual surface temperature today [K]

o
]
S,
V)
©
=
]
—
©
-

Latitude [deg]

-150  -100 -50 0 50 100 150 -150 -100 -50 0
Longitude [deg] Longitude [deg]

N T ! I -
160 170 180 190 200 210 220 230 200 400 600 800 1000 1200

Stamenkovic + (2018)

MMx N A Jet Propulsion Laboratory
* California Institute of Technology



Brines and 0,: TODAY in 3D
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|Brines and 0,: TODAY in 3D
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‘Brines and 0,: With Obliquity Change

Annual surface temperature today [K] Annual surface pressure today [Pa]
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Brines and 0,: With Obliquity Change

Obliquity in deg

Stamenkovic + (2018)

MMx N A Jet Propulsion Laboratory

& California Institute of Technology



Brines and 0,: in 4D (3D + Time) 10

Solubility(OBL) OBL(Time)
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Brines and 0,: in 4D (3D + Time)

Changes in time
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s and 0,: Evidence in the rock record

Evidence of large [O2]aq from MnO,
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* Liquid brines on modern and geologically
recent Mars can contain very large
amounts of dissolved O,—sourced either
from the atmosphere or radiolysis.

* The amounts are orders of magnitude
greater than aerobes need on the Earth
for breathing.

e We see evidence of this in the rock
record.

* The potential for aerobic life on Mars?

MARS:
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astronomy

The next frontier for planetary and human
exploration

The surface of Mars has been well mapped and characterized, yet the subsurface — the most likely place to find
signs of extant or extinct life and a repository of useful resources for human exploration — remains unexplored.
In the near future this is set to change.
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‘THZOR Concept (Transient H,0 Reconnaissance)

Objectives

Demonstrate that we can uniquely sound
from the Martian surface for groundwater,
expected to be at depths as large as 1-10 km,
using a low-mass (<5 kg) and low-power (<10
W average) EM system and to determine its
salinity.
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ASGARD Concept (Ares Subsurface Great Access Research Drill) .

 Downhole assembly is all-mechanical, powered by compressed liquid CO, Convetional Approach Wireline Approach
driven down hole through a sub-mm fused silica capillary tube that is also used _
as a wireline to raise and lower the downhole assembly in and out of the hole Drill Pulley
once or more per Mars day. Segmernts

« Downhole assembly has a rotary-percussive mechanism powered by
progressive depressurization of the liquid CO,, culminating in the liquid flashing
to vapor where it is used to flush the cuttings away from the drill bit and up the
annulus between the mechanism and the hole where they settle into a bailing
bucket in approximately the reverse stratigraphic order that they were drilled
(e.q., first-drilled is at the bottom).

Motor  Gear Flexure Valve Hammer
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The Roses C.30 VALKYRIE™ Mission Concept Study

Volatiles And Life: Key Reconnaissance & In-Situ Exploration

WHY?
The Martian Subsurface is, if not the only, the most
likely place to find evidence of extant life on Mars.
Exploration has been limited to 2D and it’s time to
“go deep” into 3D.
Training ground for Europa/Enceladus exploration. -/

\

/ DRIVERS
Quantify (1) the modern Martian subsurface habita

(2) search for signs of extant life by following:

A. Liquid Water

B. Energy & Nutrients

C. Cellular Stability

D. Biomarkers &
Signs of Metabolic Activity
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/ HOW? \
Baseline: Insight type lander with EM

sounder, drill >10 m, in-borehole
and on ship biogeochemical analysis
focused on habitability.
Enhancements: two landers,
mobility, drill depth ~100 m, towards
life detection instruments.
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Ad Ares: Where is the water with Marsy-4D? 2
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