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Tropospheric O3 Radiative Forcing & 9.6 µm O3 band

IPCC AR5, 2013 Wallington T J et al. PNAS 2010;107:E178-E179

• Tropospheric ozone (O3) is a GHG.
• Increases in tropospheric O3 from pre-industrial to present day add radiative forcing (RF) to the climate.
• The chemical-climate model estimated radiative forcing (RF) range widely from +0.2 to +0.6 Wm-2.
• ~80% of tropospheric O3 RF is in longwave (rest is shortwave).
• 97% of the O3 longwave absorption is in the 9.6 μm band [Rothman et al., 1987].
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Motivations:
• TES, IASI, AIRS, CrIS and models provides 9.6-μm O3 band flux and flux sensitivity (e.g. IRK)

• O3 GHG effect is more unevenly distributed than long-lived GHG gases

• How do modeled TOA fluxes compare to the observations?
• Biases in model O3, water vapor, and temperature are sources of uncertainties in O3  RF.

• Benchmarking present day ozone band flux is the first step to understand model divergence in ozone 
RF.
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Flux and IRK 
(Instantaneous Radiative Kernel)
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• Ozone Band TOA Flux (W/m2)

• IRK (e.g. W/m2/ppb)

• Tropospheric O3 longwave 
radiative effect (LWRE, W/m2) 

Uses 5-angle 
Gaussian Integration
(assumes azimuthal 
symmetry)

ql (z): O3, H2O, Ta, etc.
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The history of the studies used
Instantaneous Radiative Kernel  (IRK)



Global patterns (Clear Sky) For O3, H2O, and T IRKs
• The bias at the regions with large IRKs would 

contribute more errors to the flux than other 
places.

• All kernels are large at low latitudes and decrease 
to high latitude.
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• The TOA flux is most sensitive to 
- tropical lower troposphere for temperature 

(~900 hPa) & water vapor (~700 hPa)
- Tropical mid-tropospheric O3 (~400 hPa)

W/m2/ppm W/m2/ppmW/m2/K

IRKTa >0 IRKH2O <0 IRKO3 <0 IRKTs >0
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A FUNDAMENTAL EQUATION:

9.6 μm band 
flux change
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Chemistry-Climate Model Initiative (CCMI) models 
& reanalysis 

refC1: 
● uses state-of-knowledge historic forcing
● observed sea surface conditions 
● the models simulate the recent past (1960–2010). 
● The models are free-running

Model CCMI runs
1 CCCma CMAM refC1 r1i1p1 v1
2 ETH-PMOD SOCOL3 refC1 r1i1p1 v1
3 GSFC GEOSCCM refC1 r1i1p1 v1
4 MESSy EMAC-L47MA refC1 r1i1p1 v1
5 MESSy EMAC-L90MA refC1 r1i1p1 v1
6 MRI MRI-ESM1r1 refC1 r1i1p1 v1
7 GFDL/NOAA AM3 - - -
8 NCAR CESM - - -

Reanalysis ERA-Interim
TCR-1 - - -

● Model inter-comparison 
exercises

● ACCMIP follow up
● Coordinate model comparison 

and evaluation
● Associate modeling activities
● In support of the upcoming IPCC
● ERA-Interim: physical variable
● TCR-1: O3



Assimilation scheme Ensemble Kalman filter, 32 members

Forecast model MIROC-Chem, 92 species & 262 reactions

State vector NOx & CO emissions, lightning NOx, 35 chemical species

Assimilated data OMI, SCIAMACHY, GOME-2 NO2 (DOMINO2), 
TES O3 (v6), MOPITT CO (v7 NIR), MLS O3,HNO3 (v4.2)

A priori emissions EDGAR v4.2, GFED v3.1, GEIA

Period 2005-2017

Resolution Horizontal: 2.8°, Vertical: 32 layers to 4 hPa

Mul$-cons$tuent,	mul$-satellite	data	
assimila$on	provides	comprehensive	constraints	

on	the	en$re	tropospheric	profile	of	ozone.

Tropospheric	Chemistry	Reanalysis	(TCR-1)

Sonde  Model  Reanalysis



Total Toa Flux Bias: 
Significantly Different Between Models

• Major biases in tropics and 
subtropics for most models.

• Tropics: large negative bias 
except CMAM (positive bias).

• SOCOL3 and MRI-EMS1r1 both 
have the largest negative biases 
(-0.4 to -0.6 W/m2) between 
±30°.

• Secondary peaks at polar 
regions, e.g. GEOSCCM and 
CESM

Implications:
• Model’s atmospheres are more opaque than reanalysis atmosphere at 9.6 micron ozone band
• On average of 0.2 W/m2 less emitted to the TOA.
• A opaque atmosphere will have a weaker IRK than transparent atmosphere.



TOA FLUX BIAS: 
Significantly different between models

4 components
Current CCMI project

Only Ozone component
Past ACCMIP project

Bowman et al., 2013



Flux bias attribution:

Model Contribution rank

1 2 3 4

AM3 O3 H2O Ts Ta

SOCOL3 O3 H2O Ts Ta

GEOSCCM Ts H2O O3 Ta

CMAM Ts/Ts H2O O3 Ta

EMAC-L47MA O3 H2O Ts Ta

EMAC-L90MA O3 H2O Ts Ta

MRI-ESM1r1 O3 H2O Ts Ta

CESM H2O Ts O3 Ta

Color means bias :
large at Polar region
large at Tropical region 
Small contribution

___ Total    ___ Ta    ___ Ts ___ O3        ___ H2O



• Dominant region: 200-800 hPa,
45S – 45N

• GEOCCM, CMAM, and CESM
have similar patterns

• Low-high pattern
• ⇒ small biases to TOA fluxes

• SOCOL3 & MRI-ESM1r1
• large positive bias over

tropical upper troposphere
• add additional bias in tropics

O3 bias to reanalysis

O3 Large

O3 Large

O3 small

O3 small

O3 small

O3 IRK

×



H2O bias to reanalysis

• Dominant region: 
• 900 - 600 hPa, 30S – 30N
• tropical and lower/middle troposphere 

region ⇒ Large TOA flux bias
• SOCOL3:

• strongest positive bias
• tropical 800~600 hPa
• ⇒ negative TOA flux bias

_

+

× =
H2O IRK

• CMAM:
• strongest negative bias
• ⇒ positive TOA flux bias



Ts bias to reanalysis

• Localized bias ⇒ cancellation
• SOCOL3, GEOSCCM, CMAM: 

• Small differences in global SST
• Except polar sea.

• Large differences over land, e.g. 
• CMAM at Middle East and N. 

Africa, ⇒ flux bias
• AM3, GEOSCCM, CMAM, two EMAC, 

CESM:
• Zonally constantly underestimate 

at polar region ⇒ flux bias

× IRK



Ta bias to reanalysis

• Symmetric about equator

• Lower troposphere

• all model overestimate Ta.

• CMAM:
• overestimate Ta
• tropics entire troposphere  
• strong at lower troposphere

• ⇒ flux bias in tropics
• Not contribute much to flux bias in other models

×
Ta IRK



Conclusions
• We expanded IRK for O3 to H2O, Ta, and Ts.
• We for the first time used chemical reanalysis data for the model bias
• We demonstrate a method to benchmark the model TOA fluxes with the 

9.6-µm O3 band satellite observations 
- Where and which variables in the model bias è flux bias 
- Most model atmosphere: more opaque than reanalysis atmosphere 
- AM3 has the smallest flux bias but right for wrong reason.
- SOCOL3 and MRI-ESM1r1 have large potential to improve their fluxes.
- Both ozone and water vapor contribute more biases to fluxes than temperature

Outlooking:

• Adding AIRS/CrIS IRK products will extend the analysis to decadal scales.

• The similar study could be applied to any other GHG, i.e. CO2 and CH4.
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1. Significant diversity in the spatial patterns in flux bias
2. SOCOL3, 2 EMAC, and MRI-ESM1r1 biased low at:

a. the Indonesia warm pool region
b. subtropical ocean
c. ⇒ tropical negative biases in zonal flux

3.    CMAM 
a. strong overestimates (-0.25 W/m2) over ocean
b. ⇒ tropical positive biases in zonal flux 
c. N. Africa, Middle East and Asia biased low.
d. ⇒ less overestimate than SH subtropics

GEOSCCM CMAM

EMAC-L47MA EMAC-L90MA

MRI-ESM1r1 CESM

AM3 SOCOL3

1a

1b

2a

Spatial distribution of FTOA BIAS: 
Expand To A Global View



Flux bias attribution:
• Ta: Generally small contributions for most models.

• Ts: commonly small contributions except 
- CMAM (large negative bias (-0.2 to -0.3 W/m2) in both 

subtropics) and polar region
- Polar bias ⇒ flux bias: GEOSCCM, CESM (-0.3 W/m2).

• O3 contributes to low latitudes
- Strong and dominant in SOCOL3 and MRI-ESM1r1 at (-

0.2 to -0.4 W/m2); 
- moderate in AM3 and both EMAC runs (-0.2 W/m2);
- weaker in GEOSCCM, CMAM, and CESM.

• H2O contribution mainly in low latitudes as O3
- Moderate in magnitude (~0.2 W/m2) compare to O3
- AM3: biased high and balanced by biased low from O3
- AM3 has right answers for the wrong reasons.
- CMAM: also bias high and partly balanced by biased low 

from Ts over both subtropics but not tropics.
- Dominant sources for total bias in GEOSCCM and CESM

___ Ta ___ Ts ___ O3         ___ H2O

___ Total


