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Starshade Technology Development Activity (S5) %

e S5 advances starshade technology to
TRLS5 for future space telescope
missions

e Key Performance Parameters, test
articles, and relevant environments
in S5 defined w.r.t. Starshade
Rendezvous and HabEx

e S5 is designed to close starshade
technology gaps maintained in EXEP
Technology Plan Appendix

e Both the Technology Plan Appendix
and S5 Plan are ‘living documents’
— Gaps and milestones specific to

Remote Occulter can be added
through existing change cycle

ExoPlanet Exploration Program

e

Starshade to TRL5 (S5) Technology Development Plan

EXOPLANET EXPLORATION PROGRAM

2018 Technology Plan Appendix



The Three Starshade Technology Gaps

(1) Starlight Suppression _+ (2) Formation Sensing
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Suppres'sing scatted ﬁght off petal
edges from off-axis Sunlight (S-1)

Sensing the lateral offset
between the spacecraft (S-3)

(3) Deployment Accuracy
and Shape Sta
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Suppressing diffracted light from on-axis
starlight and optical modeling (S-2)

S-# corresponds to EXEP
Starshade Technology Gap Fabricating the

(http://exoplanets.nasa.gov/e i petals to high
xep/technology/gap-lists) Positioning the petals to high accuracy, blocking on-axis starlight, accuracy (S-4) 3

maintaining overall shape on a highly stable structure (S-5)
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S5 Starshade Error Budget

ExoPlanet Exploration Program

WFIRST-Starshade Rendezvous at 1.52 /D TWA
|
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Detect & Characterize Earth 2.0

Planet flux 24 x 10" Stellar flux
[

Limit photometric noise at IWA to = 20X planet
Calibrate systematic noise to < 10%

Science investigations
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Figure 2: Flow down of Key Science Parameters of Starshade Rendezvous mission to Key Performance Parameters of
starshade itself.



State of the Art: Starlight Suppression E

ExoPlanet Exploration Program
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e S5 KPP is 1010 contrast at starshade
inner working angle

— Exozodi background yields diminishing
| returns to better contrast

— Goal is to do better anyway, of course

e State of the art for demonstrated
suppression is recent results from
Princeton Testbed, showing better
than 10719 contrast over significant
fraction of IWA at both narrowband
and 10% broadband operation
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Contrast

e Remote occulter contrast KPP is likely
N relaxed as small telescope PSF reduces
L HOOR background limits
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Solar Scatter %
A

ExoPlanet Exploration Program

e KPP is solar glint lobes less than 25t magnitude

— Would like to do better- Goal is 26" magnitude, at this level limit is
purely diffraction

— Can perhaps do better with ‘stealth edges’ at price of no starshade
rotation

e State of the art is measurements of amorphous metal edges
consistent with V = 25.5

Scatter Results Model and experimentgl data for‘0.2 microp radius edge with 61% reflectivity
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Formation Flying
Lateral Offset Sensing

> Pupil image is collected and compared to library of stored offset pupil
images to determine direction and distance of lateral offset

camera image

SLATE
results

Optical
model
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POC: Michael Bottom (JPL)
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Formation Flying
Closed Loop Formation Flying Model

Control region limit — - — - Outer threshold — — Inner threshold Thrusters firing Optimal trajectory

» Control scheme attempts to
keep starshade ballistically
‘bouncing’ within inner
threshold. Outer threshold
deal gracefully with
‘overshoots’ to maintain £1m
positioning.

» Models demonstrate
successful position control
with lab-validated optical
performance.

POC: Thibault Flinois (JPL)



Formation Flying %
i,

ExoPlanet Exploration Program

e Formation flying is standard NASA technology- we do it every time
a capsule docks at ISS. Technology gap is (was) sensing lateral
displacement at large distances

e S5 KPP is lateral position sensing within 0.3 m to control lateral
position offset to within 1 m; related to oversizing of starshade
shadow w.r.t. telescope aperture

e State of the art: this technology is now at TRL5 for the L2-orbit
starshade missions.

e Formation flying technology is likely much less mature for remote
occulter concept: accelerations and conops are very different
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Petal Shape Accuracy and Stability %
b

ExoPlanet Exploration Program

e Petal shape determines the apodization function of starshade-
petals must be built right, survive deployment, and stay stable
through thermal environment

e S5 Shape KPP flows down from contrast requirement of 10-19,
leads to 10’s of microns tolerances in petal shape

e State of the art: petals are manufacturable with needed tolerances
and stay in spec through early tests, but much testing still left to

do.

e Remote occulter shape KPP likely less stringent to match likely
lower contrast requirement
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Petal Position Accuracy and Stability %
b

ExoPlanet Exploration Program

e Petals must be deployed to (and stay at) correct positions for
apodization to do any good.

e S5 Position KPP also flows down from 10719 contrast KPP, in this
case to 100’s of micron tolerances

e State of the art: inner disk is based upon Astromesh antenna with
high flight heritage; deployment accuracy and stability testing are
planned over next few years.

e Remote occulter Petal Position KPP likely less stringent for same
reasons as for Petal Shape
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Inner Disk and Optical Shield

Hub design

Spoke and ‘nipple’

Prototype shield segment Truss design
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How Does Remote Occulter Differ from %
Rendezvous and HabEx? ™

ExoPlanet Exploration Program

e Ground Telescope e Earth orbit (vs. L2)
— Bigger aperture — Accelerations
— Need for laser guide star — Retargeting
— Field of regard — Thermal and radiation
— Weather environment
— Dispersion — Earthshine
e Size
— Tolerances
— Mass

— Launch vehicle

15



Matters of Size %
RN

ExoPlanet Exploration Program

e S5 mechanical architecture is expected to be scalable to 100m

e Rendezvous (26m) and HabEx (52m) starshades fit into Falcon
Heavy fairing. Remote Occulter (~100m) is marginal for FH, may
require SLS.

e Tolerances are likely to be much looser (see Shaklan talk) because
smaller telescope PSF mixes much less unsuppressed light with
exoplanet signal

e For 100m starshade, dry mass is ~15 metric tons (inc. contingency)
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Matters in Earth Orbit (1) %
i,

ExoPlanet Exploration Program

e Relative transverse acceleration between starshade and telescope
will be <.033 m/s2. For Rendezvous and HabEx at L2, acceleration
is ~1000x smaller.

e Given large mass and acceleration, remote occulter will need to
thrust during much or all of spectroscopy integration time

— Analysis indicates thrust plumes may scatter a lot of sunlight into
telescope.

— Not an issue for L2 missions since thrusts are <1 s and occur minutes
apart, so little science time is lost by not collecting data during thrusts.

— Structure needs to be dimensionally stable against thrust.
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Matters in Earth Orbit (2) %
i,

e Retargeting will likely require a lot of fuel to move orbit apogee
around the earth, compared to retargeting at L2

e Earth orbits are more stressing:
— starshade crosses Earth’s shadow once per orbit- big thermal swings.
— Also crossing Van Allen belts

— Need to be mindful of atmospheric drag- do not want untimely safe
mode to burn starshade up (pushes to longer orbits)
e Starshade will essentially always reflect quarter phase Earthshine
towards telescope (Earth is always nearly new at L2). Needs to be
extra dark.

ExoPlanet Exploration Program
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Matters with Ground Telescope: Field of Regard %
Bmeia,

ExoPlanet Exploration Program

e Unique conditions of coupled ground/space mission constrain the
field of regard:

— Telescope requires nighttime operation (sun at least 110 degrees below
zenith)

— Star location above 2 airmasses (starshade less than 60 degrees below zenith)
— Starshade cannot reflect sunlight into telescope (Sun behind starshade)

— Starshade can only tilt a small number of degrees from line of sight (assuming
10 degrees here)

Right Ascension

ssssssssssssss
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Matters with Ground Telescope: Laser Guide Star %
b

ExoPlanet Exploration Program

e The starshade blocks the obvious natural guide star available for
AO. Laser guide star(s) will be necessary.

— Current ground-based laser guide stars can be used here
— The starshade itself is a reasonable place to put a laser beacon

e To keep power manageable, must have narrow divergence, be steerable

e Need to anticipate that >50% of observations will be lost to typical
telescope down time: ~30% cloudy, ~10% bad
seeing/winds/temps, ~10% technical.

e Most observations occur at 45-60 degrees zenith angle.
Atmospheric dispersion will be very large compared to telescope
PSF for broad spectra.
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Matters with Ground Telescope: Atmosphere and Weather %
i,

ExoPlanet Exploration Program

e Seeing and Rayleigh scattering in air are not expected to limit
starshade performance
— Starshade shadow is already well developed before it reaches the top
of atmosphere, has large angular size as seen from ground
e 1” seeing not sufficient to scatter light back into telescope

e Rayleigh scattering well outside FOV

e Need to anticipate that >50% of observations will be lost to typical
telescope down time: ~30% cloudy, ~10% bad
seeing/winds/temps, ~10% technical.

e Most observations occur at 45-60 degrees zenith angle.
Atmospheric dispersion will be very large compared to telescope
PSF for broad spectra and require good compensation.
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