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ExoPlanet Exploration Program

Starshade Technology Development Activity (S5)

• S5 advances starshade technology to 
TRL5 for future space telescope 
missions

• Key Performance Parameters, test 
articles, and relevant environments 
in S5 defined w.r.t. Starshade 
Rendezvous and HabEx

• S5 is designed to close starshade 
technology gaps maintained in ExEP 
Technology Plan Appendix

• Both the Technology Plan Appendix 
and S5 Plan are ‘living documents’
– Gaps and milestones specific to 

Remote Occulter can be added 
through existing change cycle
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The Three Starshade Technology Gaps
(1) Starlight Suppression

Suppressing diffracted light from on-axis 
starlight and optical modeling (S-2)

Suppressing scatted light off petal 
edges from off-axis Sunlight (S-1)

Positioning the petals to high accuracy, blocking on-axis starlight, 
maintaining overall shape on a highly stable structure (S-5)

Fabricating the 
petals to high 
accuracy (S-4)

(2) Formation Sensing  

(3) Deployment Accuracy 
and Shape Stability

Sensing the lateral offset 
between the spacecraft (S-3)

S-# corresponds to ExEP 
Starshade Technology Gap 
(http://exoplanets.nasa.gov/e
xep/technology/gap-lists) 3
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S5 Starshade Error Budget
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State of the Art: Starlight Suppression

• S5 KPP is 10-10 contrast at starshade 
inner working angle
– Exozodi background yields diminishing 

returns to better contrast
– Goal is to do better anyway, of course

• State of the art for demonstrated
suppression is recent results from 
Princeton Testbed, showing better 
than 10-10 contrast over significant 
fraction of IWA at both narrowband 
and 10% broadband operation

• Remote occulter contrast KPP is likely 
relaxed as small telescope PSF reduces 
background limits
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Solar Scatter

• KPP is solar glint lobes less than 25th magnitude
– Would like to do better- Goal is 26th magnitude, at this level limit is 

purely diffraction
– Can perhaps do better with ‘stealth edges’ at price of no starshade 

rotation
• State of the art is measurements of amorphous metal edges 

consistent with V = 25.5
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Formation Flying
Lateral Offset Sensing 
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Ø Pupil image is collected and compared to library of stored offset pupil 
images to determine direction and distance of lateral offset

POC: Michael Bottom (JPL)

Camera image

Optical 
model

SLATE 
results
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Formation Flying
Closed Loop Formation Flying Model

Ø Control scheme attempts to 
keep starshade ballistically 
‘bouncing’ within inner 
threshold. Outer threshold 
deal gracefully with 
‘overshoots’ to maintain ±1m 
positioning.

Ø Models demonstrate 
successful position control 
with lab-validated optical 
performance.

POC: Thibault Flinois (JPL)
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Formation Flying

• Formation flying is standard NASA technology- we do it every time 
a capsule docks at ISS. Technology gap is (was) sensing lateral 
displacement at large distances

• S5 KPP is lateral position sensing within 0.3 m to control lateral 
position offset to within 1 m; related to oversizing of starshade 
shadow w.r.t. telescope aperture

• State of the art: this technology is now at TRL5 for the L2-orbit 
starshade missions.

• Formation flying technology is likely much less mature for remote 
occulter concept: accelerations and conops are very different

10



ExoPlanet Exploration Program

Petal Shape Accuracy and Stability

• Petal shape determines the apodization function of starshade-
petals must be built right, survive deployment, and stay stable 
through thermal environment

• S5 Shape KPP flows down from contrast requirement of 10-10, 
leads to 10’s of microns tolerances in petal shape

• State of the art: petals are manufacturable with needed tolerances 
and stay in spec through early tests, but much testing still left to 
do.

• Remote occulter shape KPP likely less stringent to match likely 
lower contrast requirement
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Recent Petal Progress
First petal article built

First flight-like edge segment meets shape spec, and 
small deviations can be corrected before bonding
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Petal Position Accuracy and Stability

• Petals must be deployed to (and stay at) correct positions for 
apodization to do any good.

• S5 Position KPP also flows down from 10-10 contrast KPP, in this 
case to 100’s of micron tolerances

• State of the art: inner disk is based upon Astromesh antenna with 
high flight heritage; deployment accuracy and stability testing are 
planned over next few years.

• Remote occulter Petal Position KPP likely less stringent for same 
reasons as for Petal Shape
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Inner Disk and Optical Shield
Hub design

Spoke  and ‘nipple’

Truss designPrototype shield segment
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How Does Remote Occulter Differ from 
Rendezvous and HabEx?

• Ground Telescope
– Bigger aperture
– Need for laser guide star
– Field of regard
– Weather
– Dispersion

• Size
– Tolerances
– Mass
– Launch vehicle
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• Earth orbit (vs. L2)
– Accelerations
– Retargeting
– Thermal and radiation 

environment
– Earthshine
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Matters of Size

• S5 mechanical architecture is expected to be scalable to 100m
• Rendezvous (26m) and HabEx (52m) starshades fit into Falcon 

Heavy fairing. Remote Occulter (~100m) is marginal for FH, may 
require SLS.

• Tolerances are likely to be much looser (see Shaklan talk) because 
smaller telescope PSF mixes much less unsuppressed light with 
exoplanet signal

• For 100m starshade, dry mass is ~15 metric tons (inc. contingency)
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Matters in Earth Orbit (1)

• Relative transverse acceleration between starshade and telescope 
will be ≲.033 m/s2. For Rendezvous and HabEx at L2, acceleration 
is ~1000x smaller.

• Given large mass and acceleration, remote occulter will need to 
thrust during much or all of spectroscopy integration time
– Analysis indicates thrust plumes may scatter a lot of sunlight into 

telescope. 
– Not an issue for L2 missions since thrusts are <1 s and occur minutes 

apart, so little science time is lost by not collecting data during thrusts.
– Structure needs to be dimensionally stable against thrust.
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Matters in Earth Orbit (2)

• Retargeting will likely require a lot of fuel to move orbit apogee 
around the earth, compared to retargeting at L2

• Earth orbits are more stressing:
– starshade crosses Earth’s shadow once per orbit- big thermal swings.
– Also crossing Van Allen belts
– Need to be mindful of atmospheric drag- do not want untimely safe 

mode to burn starshade up (pushes to longer orbits)
• Starshade will essentially always reflect quarter phase Earthshine 

towards telescope (Earth is always nearly new at L2). Needs to be 
extra dark.
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Matters with Ground Telescope: Field of Regard

• Unique conditions of coupled ground/space mission constrain the 
field of regard:
– Telescope requires nighttime operation (sun at least 110 degrees below 

zenith)
– Star location above 2 airmasses (starshade less than 60 degrees below zenith)
– Starshade cannot reflect sunlight into telescope (Sun behind starshade) 
– Starshade can only tilt a small number of degrees from line of sight (assuming 

10 degrees here)
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Matters with Ground Telescope: Laser Guide Star

• The starshade blocks the obvious natural guide star available for 
AO. Laser guide star(s) will be necessary.
– Current ground-based laser guide stars can be used here
– The starshade itself is a reasonable place to put a laser beacon

• To keep power manageable, must have narrow divergence, be steerable

• Need to anticipate that >50% of observations will be lost to typical 
telescope down time: ~30% cloudy, ~10% bad 
seeing/winds/temps, ~10% technical.

• Most observations occur at 45-60 degrees zenith angle. 
Atmospheric dispersion will be very large compared to telescope 
PSF for broad spectra.
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Matters with Ground Telescope: Atmosphere and Weather

• Seeing and Rayleigh scattering in air are not expected to limit 
starshade performance
– Starshade shadow is already well developed before it reaches the top 

of atmosphere, has large angular size as seen from ground
• 1” seeing not sufficient to scatter light back into telescope
• Rayleigh scattering well outside FOV

• Need to anticipate that >50% of observations will be lost to typical 
telescope down time: ~30% cloudy, ~10% bad 
seeing/winds/temps, ~10% technical.

• Most observations occur at 45-60 degrees zenith angle. 
Atmospheric dispersion will be very large compared to telescope 
PSF for broad spectra and require good compensation.
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