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Pre-Decisional Information – For Planning and Discussion Purposes Only



Since 1961:
46 individual 
RTGs used on 27 
U.S. missions.



Thermoelectric conversion

∆𝑉 = 𝑆∆𝑇 𝑄̇ = 𝑆𝑇𝐼 = П𝐼

https://en.wikipedia.org/wiki/Thermoelectric_generator, downloaded on 9th March 2017.

Seebeck effect Peltier effect



eMMRTG architecture

238PuO2

~1373 K

16 x 1 kg pellets

Heat radiating fins

Cold side ~473 K

Multi-mission Radioisotope 
Thermoelectric Generator 

(MMRTG) on Curiosity 

https://rps.nasa.gov/resources/56/enhanced-multi-mission-radioisotope-thermoelectric-generator-emmrtg-concept/

https://mars.nasa.gov/resources/6032/panoramic-view-from-west-of-dingo-gap/



State of the art RTGs materials
Mission 
name

TE 
Mater.

Launc
h year

Transit 4A PbTe 1961

Transit 4B PbTe 1962

Apollo 12 PbTe 1969

Triad-01-1x PbTe 1972

Pioneer 10 PbTe 1972

Pioneer 11 PbTe 1973

Viking 1 PbTe 1975

Viking 2 PbTe 1975

LES 8 Si-Ge 1976

LES 9 Si-Ge 1976

Voyager 1 Si-Ge 1977

Voyager 2 Si-Ge 1977

Galileo Si-Ge 1989

Ulysses Si-Ge 1990

Cassini Si-Ge 1997

New 
Horizons

Si-Ge 2006

MSL PbTe 2011

• RTGs for the past 50 years have either been PbTe or 
SiGe based
• ~6.5% efficiency at the system level 
• High level of reliability and long life

• Increasing demand for higher RTG conversion efficiency
• Higher specific power (W/kg) needed for larger 

scientific payloads 
• Limited amount of expensive heat source

Need to develop advanced 
thermoelectric materials

SiGe GPHS RTG (1980-2006)
PbTe/TAGS MMRTG

(2008-present)



Thermoelectric power generation
Efficiency

Figure of merit
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Hot Side Temperature (K)

Tcold = 373 K

ZTave = 1

ZTave = 2

ZTave = 0.5

ZTave = 4

S = Seebeck coefficient 
(thermopower)

ρ = Electrical resistivity 

κ = Thermal conductivity 

T = Absolute temperature 

Challenge: Decouple the electronic and thermal transport

“phonon glass, electron crystal”

Power generation
(across 1275 to 300 K)

State-Of-Practice materials: 
ZTaverage ~ 0.5

State-Of-the-Art materials: 
ZTaverage ~ 1.1

Best SOA materials: 
ZTpeak ~ 1.5 to 2.0



Fundamental equations

Electronic transport Thermal transport

𝜎 =
1
𝜌 = 𝑛 & 𝑒 & 𝜇 = 𝑛 & 𝑒! &

𝜏
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κ = κ%& + κ'

𝑧𝑇 =
𝑆! 𝑇
𝜌𝜅

κ%& = 𝐿 & 𝜎 & 𝑇

κ' =
1
3𝐶( & ν) & Λ

n = charge carrier concentration
μ = charge carrier mobility 
e = elementary charge
m* = cc effective mass
τ = relaxation time
kB = Boltzmann const.
ħ = Planck’s const.

L = Lorenz number
Cp = heat capacity
νg = phonon velocity 
Λ = phonon mean free path



Need for high performance materials that are chemically, thermally, and mechanically 
stable across wide DT.

Approach 1: Complex crystal structures
• Inherently low thermal conductivity
•Optimization electronic transport 

properties
•Challenges: 

• Find synthetic methods that enable 
precise stoichiometric control and 
practical scaling up
•Having theoretical guidance to 

predict structure-properties relations 

Technical approach to materials

Th3P4

Zintl phases

Approach 2: Introducing nano features in already known good semiconductors
•Reduce thermal conductivity and improve electronic properties via compositing 

nanoscale grains within bulk materials
•Challenges:

• Precise control over size, distribution, and composition of nano inclusions
•Retaining nanoscale features even after consolidation in bulk pellets

Skutterudites



Optimization strategies

Improving electronic properties:
• Doping/Alloying

- Manipulation of n.
- Band engineering (EF, Eg, degeneracy, m*, μ).

• Modulation:
- Layered or complex structures. E.g. superlattices, 

layered cobaltites (NaxCo2O4), oxyselenides
(BiCuSeO), Ruddlesden-Popper phases (Sr2TiO4).

Improving thermal properties:
• Doping/Alloying

- Changes in bond character (ionicity, covalency) 
length, strength.

- Changes in mass and size of ions.
• Nanostructuring
• Defects (point defects, vacancies, CS planes)

Phys. Status Solidi A,  2016, 213 (3), 808-823.

https://commons.wikimedia.org/w/index.php?curid=17434829.

https://energyeducation.ca/encyclopedia/Band_gap



n-type La3-xTe4

• Known good TE materials since the 1970’s
• Complex crystal structure

- Defect Th3P4 structure-type (I-43d)
28 atoms per unit cell
up to 1/9 of La positions can be vacant

• Low thermal conductivity (~2 Wm-1K-1)
• Good electrical properties

- Controlled by vacancy concentration on La site
• Difficult to synthesize

Multi-step high temperature processes à low 
reproducibility of electronic properties

• New synthesis developed at JPL
Powder metallurgy synthesis method, enabling 
reproducible optimization of TE properties

• Peak zT1273 K ≈ 1.2

Fully filled crystal structure of La3Te4

May et al., Chem. Mater., 2010, 22, 2995-2999



p-type Yb14MnSb11

• Yb14MnSb11

- Zintl Structures
- Covalent, anionic substructures: [MPn4]9-, [Pn3]7-, 

4Pn3-, 14A2+

- Zintl-Klemm valence count: essentially complete 
electron transfer between cation and anion

- Body centered tetragonal (I41/acd)
- 208 atoms per unit cell

• Low thermal conductivity (~0.85 Wm-1K-1)
• Tunable electronic properties via doping
• Peak zT ~1.3 @1273K
• Factor of 3x over SiGe

Yb14MnSb11



p-type material optimization

Yb14MnSb11 composites



Composite metal (M) choice

Yb14MnSb11 + M

- Ni reacted with matrix forming secondary phases à not good.

- We used Co à

Inclusions M-Sb
Reactivity 

ρ
[nΩ·m] @25°C E [GPa] CTE 

[um/mK] @25°C

Ni High 69.3 200 13.4

Co Low 62.4 209 13

Cobalt Composite Network Using Thermoelectrics 
(CoCoNUT)



Yb14MnSb11 + M synthesis

High energy ball mill
Mix precursors
(Yb, MnSb, Sb + 

CoSb/W)

Homogenized 
powder

SPS 
Synthesis/compaction

½” pellets
>98% density

Yb14MnSb11 +2vol%Co (W) +5vol%Co (W) +10vol%Co



Co Compositing in Yb14MnSb11

2vol% 5vol% 10vol%

• Profile of each sample matches with Yb14MnSb11.

• Sample with 10%Co shows CoSb Impurities. 

• Inclusions sizes between nm and several μm.

• Signs of CoSb in 10%Co sample.

*



• More M à more conductive à ρ
decreases (as expected).

• Deviation from EMT increases with 
higher inclusions content à model 
is missing something.

Co Compositing in Yb14MnSb11

+Co

K = conductivity (resistivity)
1 = matrix
2 = inclusion
v = volume fraction

EMT



• More M à more conductive à ρ decreases (as expected).

• Despite reduction in ρ, the Seebeck remains constant.

Co Compositing in Yb14MnSb11

+Co
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• Lattice contributions to thermal conductivity derived from Wiedemann-Franz law 
(κL = κ - LσT).

• Cp corrected to include contribution from Co.
• The sample with 10vol% inclusions pays penalties on zT due to increased thermal 

conductivity.

Co Compositing in Yb14MnSb11

+Co

κ = 1000 & 𝐶% & 𝑑 & 𝐷
𝑊

𝑚 & 𝐾

Cp = heat capacity [J/(g*K)]
d = density [g/cm3]
D = diffusivity [cm2/s]



Thermoelectric performance

zT≈ 1.7

zT≈ 1.25

• 5vol% has improved zT (≈1.7 @1273K), due to better electrical 
ad similar thermal properties.

• Still to understand the transport mechanism to be able to 
apply it consistently to other material systems. 



• Lower electrical resistivity compared to previous studies à lower amount will 
have same effect?

• W does not react with Sb.

• Higher Young’s modulus à confer better robustness to composite.

• Lower CTE could generate mechanical instability (cracks) after thermal cycling at 
the interface inclusion-matrix.

Optimization with W composite

Inclusions M-Sb
Reactivity 

ρ
[nΩ·m] @25°C E [GPa] CTE 

[um/mK] @25°C

Ni High 69.3 200 13.4

Co Low 64.4 209 13

W None 52.8 411 4.5



• Profile of each sample matches with Yb14MnSb11.

• W reflections are visible in 2vo%, 5vol% W samples.

• W composite samples show no side phases.

• No cracks radiating from inclusions (CTE mismatch).

XRD analysis – microstructure

*

*

J. Appl. Phys. 126, 175102 (2019).

5%W

2%W



• Electrical resistivity substantially decreases at 
lower inclusion concentrations.

• Comparison with EMT (Maxwell-Euken) shows 
lower values than predictions.

• Although samples are more conductive, 
Seebeck remains the same.

• SEM analysis shows no sign of crack 
generation even after several thermal cycles 
up to 1273K. 

Electronic transport
As sintered After thermal cycling

+W



• Similarly to Co, κL is higher.

• Significant deviation from predicted values (EMT).

• Better electronic properties are washed out by worsening of the thermal conductivity, 
hence peak zT remains ≈1.3 @1273K.

Thermal transport and zT

+W

zT≈ 1.3



Vickers Hardness

xxxHVyy/zz

xxx= hardness number
HV= Hardness Vickers
yy= used load in Kgf
zz= loading time if different from 10s or 15s

𝐻𝑉 =
𝐹
𝐴 =

1.8544𝐹
𝑑!

𝐾𝑔𝑓
𝑚𝑚!

In good indentations (no tilt of the head and flat 
sample): d = d1 = d2

https://commons.wikimedia.org/wiki/File:Vickers-path.svg

Hardness test specifications:
• Diamond indenter
• Loads: 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 1 Kgf
• Indentation time: 10s
• Indentations #: 5 per load



100g 500g 1Kg

14-1-11

2vol% W

5vol% W



• At low loads (up to 300gf) the HV 
values are comparable for all samples.

• At higher loads (0.5 and 1 Kgf) the 
sample with 5 vol%W shows higher 
HV.

• Higher HV values and active role in 
preventing crack propagation confirm 
the increased mechanical stability of 
W composite. 

• Although thermoelectric performance 
did not increase, the improved 
mechanical stability is a big plus for 
system integration.

Hardness of W composite



• Manipulation of electronic structures of high performance rare 
earth chalcogenides (RECh) and pnictides (REPn) based materials.

• Compositing to improve mechanical stability and electronic 
properties.

• Close coupling between theoretical simulations and systematic 
experimental research:
• Computational work to guide experiments. 
• Semi-empirical modeling to optimize materials systems.

Current optimization strategies

473-873 K

• Segmentation: 
• Using segmented legs we can increase the average 

zT by using materials that have peak zT at different 
temperatures.



• RTGs are often the best option to power spacecraft for deep space exploration, due to 
high reliability, long life, and predictable behavior (power output).

• Modern thermoelectrics can achieve attractive conversion efficiencies:
• Current device level efficiencies are ≈ 15% in temperature range 473 - 1273 K.
• This is a 2x improvement over “heritage” device performance. 

• Development of efficient thermoelectrics is a challenging materials science task:
• Only the first step towards practical implementation.
• Important improving thermal stability and mechanical robustness through chemical 

tuning and compositing. 

• Improved zT and mechanical stability have been obtained for p-type Yb14MnSb11 using 
compositing (Co, W).

• Achieved results are promising for future implementation.

Summary
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Further information at:  
• https://rps.nasa.gov/
• https://www.jpl.nasa.gov/
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