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Abstract. Autonomous exploration of unknown environments with UAVs re-
mains a challenging problem, especially in perceptually degraded environments.
Dust, smoke, fog, and a lack of visual or lidar-based features results in severe
difficulties for state estimation, navigation, and planning. In this work we con-
sider the problem of autonomous exploration with limited sensors and actuators,
via contact-based exploration. We present an accurate force estimation and ex-
ploration method for hybrid aerial-ground vehicle. First, we perform modeling
and system identification for a hybrid ground and aerial vehicle design which
can withstand collisions. Next, better estimation performance using encoder data
and IMU measurements is achieved compared to conventional methods and an
analysis to choose a appropriate resolution for sensors is presented. Finally, we
implement a bouncing control law which encourages exploration down long and
narrow passages. We validate our framework in both simulation and hardware
experiments.
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1 Introduction

1.1 Motivation

As hardware capabilities of MAVs are being developed, their usage is become more
widespread in a variety of applications, from rescue to entertainment. Exploration tasks
are one main use case of flying robots. For example, the exploration of dangerous mines,
caves, urban environments, or wilderness are all highly relevant problems. One partic-
ularly interesting use case is the exploration of the planets with atmospheres, from the
Mars helicopter mission, to proposed drone exploration missions on Titan, Venus, and
more.

Here we build on prior work which was proposed a hybrid aerial-ground vehicle, the
”Rollocopter”. This hybrid design demonstrates the capability of rolling and flight ex-
ploration, with increased energy efficiency and greater capacity for exploration and
mobility [1].

In spite of the high adaptability of MAVs, operations in tunnels, caves, or other envi-
ronments can often be extremely difficult because of degraded conditions such as rough
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Fig. 1: Experimental setup: Rollocopter

ground and low visibility. Dark and dusty environments harm visual sensors, which
are the most essential tools for autonomous exploration. In particular, dust is a serious
problem for the hybrid design because of the tendency of the propellers to kick up dust
when near the ground. One good solution for this challenging task is Contact-based
navigation.

In this work, we will discuss Contact-based exploration for Rollocopters. We use the
Rollocopter design shown on Fig. 1 as the experimental platform, which allows colli-
sions with the environment. As with ordinary MAVs, our Rollocopter also has an IMU
on the center of its body. In addition, encoders are installed to each wheel. Hence, colli-
sion information can be obtained with them and exploration can be continued by using
these sources of information even when all the visual sensors have failed due to dust,
fog, smoke, or darkness.

1.2 Literature review - force estimation for MAVs -

So many researches about sensorless force control (e.g. [2, 3]), contact point detection
(e.g. [4-6]), and collision reduction control ([7]) have been done for industrial robots.

These days, force related methods are starting to be applied to MAVs. [8] uses the
model predictive control for the hybrid system and achieved a exploration with keeping
contact along the walls.

[9] provided a external wrench estimation method using IMU and demonstrated a
effective control action when the collision occurs. Furthermore, contact point estimation
methods are applied to an ordinary MAVs and demonstrated its effectiveness through
an experiment.

To solve the task of indoor exploration with MAVs, contact force based exploration
methods which allows collision or contact to the environments have been proposed. [10]
achieves collaborative transportation task based on a passive force control. Efficiency
of “billiards walk exploration” is revealed in [11]. Though a force-sensorless external
wrench estimation method for MAVSs is proposed in [9], limit for this kind of IMU based
force estimation is demonstrated in [12]. Since the IMU is installed at the center of the



Contact Inertial Odometry: Hybrid Navigation on IMU Only 3

Angle Acceleration
Ts

AN

— . encoder |

fomr eﬁcoder 1C0C
: — :trye |

truj,le

v
v

time  time
Fig. 2: Problem of quantization noise.

body, IMU based estimation is affected by the perturbation between the IMU and the
contact point. [12] revealed that the estimation error becomes quite large with the small
force regions such as under 4 N when we use IMU for force estimation. Therefore, they
have developed their own ultra light force sensors and attached them at the top of their
MAVs.

1.3 Literature review - Sensor detection for force estimation -

Since our Rollocopter have encoder on each wheels, not only odometry information but
also wheel force information on the wheels can be obtained. Though high resolution
is not required for the odometry detection, its resolution should be discussed carefully
when we use encoder in order to detect external torque on the wheels.

To detect external torque on the wheels, wheel encoder signal must be differentiated
2 times to get the acceleration [13]. However, differentiation operation expands the
sensor error of the encoder and it causes a large noise called quantization noise on
acceleration signal as shown on Fig. 2. This quantization noise should be small enough
compared to the signal level so as to use encoder information for the force estimation.

There are many researches about minimal encoder decision for network control
(e.g. [14]), quantization noise analysis, and its suppression methods [15, 16]. Those re-
searches are mainly focused on channel capacity constraint or suppressing quantization
noise itself.

1.4 Literature review - Contact Inertial Odometry

The legged locomotion research community has used contacts for a long time within
kalman filters [17-22] By assuming a fixed contact points of the feet and by leveraging
the forward kinematics of the legged and using the joint configurations, it is possible to
have measurements. This however assumes no slip, feet usually use additional sensors
to sense the ground and detect collisions, and since the robot is walking on the ground,
gravity passively helps to maintain the contact, as if it was passively doing force control
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to maintain contact. In this work, this is more challenging, as the drone does collisions
almost instantly and the information is much more sparse, we have directly slip and the
motions can be very fast.

Contacts are also used in mnanipulation - robotic arms algorithms, where the shape
of a body can be reconstructed by simpling touching it. Our work is also related to this
work [23-28].

A lot of work deals with improving the performance of IMU-only state estimation
for drones, such as [29]. Our work focuses on the measurement update coming from the
information of a collision, and does not try to achieve state of the art in this field. This
work could be used to improve the perofrmance of our kalman filter however.

zero-velocity pseudo-measurements. Here, we do parallel velocity updates, since
we can’t assume that the drone stays in contact with the wall without moving... EKF
Paper for walking with smartphones, very relevant. However, easier since again, this is
walking so contact remains. Also these works often assumes the availability of a GPS
system, which helps detect when the person stops walking so they can do a pseudo
measurements [30-33]

Pseudo measurements for cars are also sued, where the no slip holonomic constraint
can be leveraged [34]. Our work is related to this work, but we our update is different
and can be made in any direction, as it is perpendicular to the wall.

On the planning and control side, many people worked on how to recover from a
collision with a drone [35, 36]. However, theese works usually try to avoid the collision,
whereas we are taking the collision to our advantage. Also, they usually assume basic
properties of the wall so they can take it into account..

1.5 Contributions: Keep navigating when everything fails !

In this paper, a novel framework for autonomous guidance, navigation and control of
autonomous hybrid vehicles in GPS denied, perceptually-degraded environments is pro-
posed. In fact, we present a novel state estimation method: Collision Inertial Odometry
(CIO), which only requires the use of an Inertial Measurement Unit (IMU) and lever-
ages information from contacts as a measurement update in a Kalman Filtering frame-
work. We demonstrate autonomous navigation using only proprioceptive sensors, i.e.
an IMU.

First, we leverage existing work in force estimation and extend it for our novel hy-
brid vehicle platform: Rollocopter. By precisely describing the dynamics of our system,
we achieve reliable collision detection, accurate force estimation and precise contact
position estimation. Our method is generic, computationally tractable and can easily be
implemented on other platforms. We also extend it for the rolling phase of our vehi-
cles and hsow that it imrpvoes the estimation by a lot. It works grteat and leverages the
properties of our system and is novel. Extensive hardware experiments demonstrate the
accuracy and reliability of our method, showing that this method can be used always
without problems.

Second, we develop a novel state estimation method: Collision Inertial Odome-
try (CIO), which only requires the use of an Inertial Measurement Unit IMU) and
leverages information from contacts as a measurement update in a Kalman Filtering
framework. Using this framework, we bring three research communities together: state
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stimation from legged systems, and aerial drone community which does forces/contact
estimation, and we show that we can use these works for very dynamic motions within
an EKF frameowrk. We show that it significantly improves the accuracy of the state es-
timates of the system velocity, such that it can be used to recover control from collision.

Finally, we demonstrate our method in an (bad - TL) environment and show that
we can autonomously navigate in a maze. We present a bouncing controller leveraging
the advantages of our hybrid vehicles, reducing the drift of the velocity in all directions
so that we can traverse rough terrain where a rolling-only navigation would not work,
and we can do it at fast speeds since we are flying. This shows that we do not ned the
assumption of zero velocity, commonly found in similar work, since we only update
the perpendicular velocity. Our framework is well suited to dynamic nvagitation and
contorl of drones.

Finally, we present extension opportunities, since this work paves the way for ex-
tensions. This work is just the start of a long road !!!! This work applies to any kind of
vehicles, including rollig, flying and hybird vehicles. In particular, it is very well suited
for small computationally-limited quadrotor platforms with low cost cameras, where
the estimates from an IMU can significantly improve the accuracy of these algorithms.
Also, since our method works with an IMU only, we can handle VIO failures as we
demonstrate in hardware experiments

In this paper, a Contact-based exploration method for the hybrid Rollocopters is
presented and 3 main contributions are addressed here.

First, accurate force sensorless collision detection method is proposed for Rollo-
copter by using IMU and encoder. Since our Rollocopter consists 3 parts, body and
2 wheels, physical model becomes more complex compared to the conventional re-
searches and the different modeling method should be used. Especially, not only the
IMU but also encoder information is indispensable to estimate the external wrench on
Rollocopter. Moreover, this estimation method is more sensitive to the external force
than only IMU case. It is because the encoder position is closer to the contact point than
IMU and it does not include the perturbation between the body and the contact point.

Secondly, method to the determine the required specifications of encoder is demon-
strated. Though we’ve found out that encoder is necessary for the force estimation of
Rollocopter, it’s resolution must be determined carefully as there’s a problem of quan-
tization noise. In this paper quantization noise for the force estimation is theoretically
formulated according to its encoder resolution and estimation method. Encoder resolu-
tion determination method for the wrench estimation is proposed based on them.

Thirdly, Contact-based exploration method for Rollocopter is proposed both for
rolling and flying mode considering multi-body modeling and nonholonmic constraint.
The force based navigation for MAV is proposed in [12] and exploration with minimal
equipment is achieved. Its quite useful in dark and dusty situation where visual sensors
do not work. However, for the Rollocopter, force based navigation for the rolling mode
should be developed because the flying mode is quite energy consuming. Force control
for electric vehicle without force sensor is proposed in [37]. However, it doesn’t assume
the application for the exploration and doesn’t expect collisions. Moreover, in rolling
mode, non-holonomic constraint on the wheels should be considered since it can be
modeled as differential drive vehicle[38, 39]. In this paper, appropriate non-holonomic



Tomoki Emmei et al.

Table 1: Specification of experimental setup

Variable Parameter Value
Total mass my 4.036 kg
Wheel mass my, 0.283 kg
Inertia I, Iy, I, 0.09,0.074, 0.09 kg-m?
Propeller diameter D 0.2286 m
Thrust coefficient Cp 0.11
Torque coefficient Cqy 0.008

Air density p 1.18
Wheel radius r 0.2667 m
Wheel inertia J 0.00975 kg-m?
Arm length l 0.254 m
Half length of the shaft L 0.3125m
Force estimator gain Ky 10
Torque estimator gain Ky 10
Wheel torque estimator gain Kye 10

total, body, wheel
right, left
external, input

Subscript t, b, w -
Subscript r, [ -
Subscript e, in -

modeling and control strategy is chosen for the Contact-based exploration for the rolling
mode.

This paper is organized as follows. In Section 2, we present oru accurate model-
ing of our system (Rollocopter/ hybird vehicle) and the derived contact force detection
and estimation method. This method is tailored to both the flying and rolling modes
of our hybrid vehicles (Rollocopter), and thus can be used by both research communi-
ties. Leveraging this reliable force estimation method tailored to our vehicle, In Section
3, we present CIO: our collision-aware IMU-only state estimation algorithm. We also
show how to do reactive planning and present our control strategy for the hybrid ve-
hicle. Section 4 presents results of each sectio nof this work. We show the reliabiliy
and accuracy of our force estimation and detection method and contact point estima-
tion. We also demonstrate the effectiveness of our state estimation odometry algorithm,
outperforming IMU-only EKFs. We also demonstrate autonomous navigation in a dark
environment, using flying only, bouncing control and rolling. Our conclusion in Section
5 summarizes this paper and provides new promising directions of research for different
research communities, since our work open new areas of research.

We also present novel results for sensor selection based on fundamental theoretical
results, presented in the Appendix A.
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2 System Modeling and Contact Forces Estimation

2.1 Experimental setup

Table 1 shows the specifications of the Rollocopter used in this paper. This Rollocopter
is kind of the coaxial octorotor, which has two large wheels for rolling on the ground.
Rollocopter can choose rolling mode and flight mode depending on an environment.

2.2 Thrust model

Gray proppeller

+ data
7F ~—— fitting

Thrust force [N]

o4 : : )
1000 1200 1400 1600 1800
PWM signal

Fig. 3: Modeling of propeller thrust force.

Aerodynamic wrench on each propeller can be formulated as:

T; = pC,D*7i} = Cr7i? (la)
Qi = pC,D’fi; = Co} (1b)

Here, each 7;, T;, and Q; describes the rotation speed, thrust, and rotation torque of ith
T
propeller. Squared propeller speed vector (77,73,7n3,75,72,7¢,n3,7i) ", can be trans-

. T . . .
formed to input wrench ( Sinzs Minx, Miny, Min, ,) with the following transformation ma-
trix C.

cr Cr Cr Cr Cr Cr Cr Cr
—ICr ICy ICr —ICr ICr —ICy —ICr ICT )
—ICr —ICr ICr ICy —ICy —ICy ICr ICyr
—Co Cp —Cp Cp Cp —Cop Cop —Cg

C=

The setup uses a brushless DC-motors are used and it has a nonlinear relationship be-
tween their PWM input and their rotation speed [40]. Therefore, we conducted an ex-
periment to measure the propeller characteristic and transform PWM signals into thrust
force directly based on quadratic approximation. Fig. 3 shows the measurement result.
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Fig. 4: Geographical model of the quad copter

2.3 Multi-body modeling

This Rollocoptor is a multi-rigid body system which has the 3 parts: the body and 2
wheels. The physical model of the Rollocopter is formulated based on Kane’s motion
equation. In flying mode, the experimental model is formulated as:

m(v+yXv) = fi, + fe (3a)
zmez(T’x‘f‘YZYy)

Iy +Ioy + J(ay+ o) +yxI-y=My,+M. (3b)
2m, L2 (T, — %)

J(H + @) = My (3c)

(3a) is translational, (3b) is rotational, and (3c) is wheel rotation motion equation[41].
Here, the frame is fixed on the body and v, ¥, @, f, and M respectively means the
velocity, the body angular velocity, the wheel rotation speed, and the force. Subscript in
means “input thrust force”, e means “external”, w means “"wheel”, and i = (/,r) means
either ”left” or “right”. v 4 yXv can be directly measured by the IMU. The translational
acceleration or the body angular velocity can be obtained with IMU and the wheel
angular velocity can be obtained with encoder on each wheels.
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Fig. 5: Control strategy of force based exploration.

In (3b) and (3¢), M, and M,,,; can be calculated as:

L(fwezl - fwezr) - Z rezifweyi

i=lr

M, = Z (Fezifwexi — FexiSfwezi) (4a)
i=lr
L(fwexr — fawex1) + Z Fexifweyi
i=lr
Myvei = rezifwexi — FexiSfwezi (4b)

In (4a)-(4b), we assume all the collisions occur on wheels.

In the rolling mode, pitch motion of the body affects the estimation results which
is different from the flying mode. For example, even when the wheel is fixed on the
ground, the body still have the degree of freedom in pitch motion. Therefore, Rolling
frame whose z axis is aligned with the ground should be introduced. Rolling frame is
fixed on the center of gravity, its x’ axis faces the same direction as the proceeding
direction, y' axis is same as the body frame, and 7’ axis is aligned with the ground.

2.4 Force estimation and collision detection

Force estimation in flying mode In order to achieve accurate estddimation, both IMU
and encoder information should be combined. Based on (3a)-(3c), esternal force, torque,
and moment on the wheels can be calculated as:

A l Y
fe:Kf/O(mta_fin_fe) (5a)
R 2mL2 (Y + V- %) ; R
M,=Ky|Iy+ J(ay + o) +/ (yxI-y—Mi,—M.)dr (Sb)
(3~ wy))

A~

Myei = Ky (J(yy + o) — /0 t Mweidt) (5¢)



10 Tomoki Emmei et al.

memory

L :
Velocity velocity >acceleration|fin Tin

v Refere:r_ce >»| Controller Mixer
pre |generation| Ty, .

Y

Rollocopter

A\

A

q Yaw
”| controlier
External
wrench
feM, estimator [€
w,y,a

Fig. 6: Block diagrams of the bouncing control

Force estimation in rolling mode At the rolling mode, following non-holonomic con-
staraint is applied:

o= S0+ ) (62)
vy =0 (6b)
'Yz—i(a)r_wl) (6¢)

In addition, though body frame, which is fixed on the Rollocopter body is adopted in
flying mode, rolling frame, whose z axix is aligned with the ground should be intro-
duced here because it doesn’t have vertical and roll motion. From those constraints and
(3a), we can derive following estimation formula for rolling mode:

A rm r. i
o= K [ (@) = fius— fo)dt (7)
A m g o
for = Ky [ (@R = 0P o) (7b)
. r(L + Iy, + 2m,, L? o .
M., = ( : 012L B )KMZ/O ((wr - wr) —Mip; — M, (7¢)

Here, a means the translational acceleration obtained by IMU.

Collision detection For the collision detection, only the external translational force
information is required if the estimation accuracy is enough. Most of the case, we can
easily threshold the signal from the noise because the collision force is much larger than
the noise level. However, the force estimation in (5a) only includes the IMU informa-
tion. Perturbation between the contact point and the IMU deteriorates the quality of the
estimation as addressed in [12] and some kind of collisions cannot be detected when
only the IMU value is used.
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One way to reflect encoder information on the collision detection is to introduce
following evaluation function W [k]:

WIk] = Wl F oK1 + warl | M [k + g, (M (k] + Mot [K]) ®)

Here,wr=1,wy =1 /L2, Wiau,, =1/ 2 is chosen so as to make W [k] force dimension
for example. When this value goes over a threshold, we define it collision.

Contact point detection Contact point detection on rolling mode is quite useful when
we want to separate the collision force from the rough ground. Based on the estimated
external wrench, contact point on each wheels can be detected. Here, we introduce
2 assumptions: the contact force on each wheels f,; occurs only on the edge of the
wheels and the lateral collision occurs only on the one side of wheel. It is because
non-holonomic constraint of Vy = 0 holds on. In addition, contact point to the ground
always exists at the rolling mode. Therefore,

fwe:fwel+fwerv r)%i_'—r?i:rz )

holds. By solving simultaneous quadratic equation the relationship (4a)-(4b), (5a)-(5¢),
and (9), contact points r; can be calculated.

2.5 Encoder resolution determination

Since the external torque can be calculated by the product of the wheel acceleration and
the wheel inertia, we should know the noise level of 2 times pseudo differential and
determine the appropriate encoder resolution. This can be determined as:

2nJ

R >log2 23 (10)

The details of this equation is based on (27) in appendix . Here, R and S respectively
shows the required encoder resolution [bit] and signal level [N]. We can obtain the sig-
nal level of the force from the force estimation experiment. Here, for example, we put
the detection threshold around 0.05 Nm and assume that the collision finishes during
100 ms. The threshold for detecting collision should be larger than 3¢ noise level and
the cutoff frequency of the pseudo differential should be faster than 100 ms. By substi-
tuting 7; with a sampling period of 10 ms, T with 100 ms, and 3« S with 0.05/J in (27),
we obtain the appropriate quantization width of 0.0074. This applies 7.1865 bit.

3 Contact Inertial Odometry, Control and Planning

3.1 Contact Inertial Odometry

As discussed in the introduction, it is possible to take information about contacts to
update the state estimation as a measurement update within a Kalman Filtering frame-
work. This is what we present in this section.
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We use the Robot Localization ROS package [42] as a baseline for our algorithm.
Given a robot pose described by its state X; at time k, with its discrete time dynamics
corrupted by Gaussian-distributed noise

X1 = f(Xk) + Wi

, where wy ~ .4 (0,Qy), with Q > O the process noise covariance, it implements an
Extended Kalman Filter for which the prediction step is given as

X1 = f(Xe) (11a)
Pii1 = FPF +Qy, (11b)

where F denotes the Jacobian matrix of f(-).

Note that it does not estimate biases of sensors, e.g., of the Inertial Measurement
Unit (IMU).

Given a measurement of the state

7 = h(x) + Vi, (12)

where Vi ~ 4 (0,Ry;), with R > 0 the measurement noise covariance, it is possible to
perform an update to the EKF as

K, = PH! (HPH! +R,) (13a)
Xp+1 = Ry 1 + K(z — HRy) (13b)
P, = (I—- KiH )P (T - K H) T + KR KT (13¢c)

where H;, denotes the Jacobian matrix of A(-)

After a collision, we assume the velocity of the robot to be parallel to the collided
obstacle. Given a previous velocity V., the parallel velocity v is therefore computed
as

(Vpre -N)
N-N

Therefore, we introduce the pseudo-measurement model for parallel collision ve-
locity updates as

V)= Vpre — N. (14)

Z=V+E< vy, 15)

with & ~ .47 (0, Z¢) Gaussian-distributed iid noise and v/ defined in Equation (14).

Note that as collisions involve a loss of energy. Therefore, this model is not biased
(mention something here).

Assuming known friction coefficients between the wall and the robot, it may be
possible to estimate this loss of energy in the parallel direction of the contact (as if
there was drag.). Since we operate in unknown complicated challenging environments,
this is not investigated in this paper and can be explored in future work.

Despite the simple looks of our approach, this method showed to provide very good
results, as shown in the results section. They were so good that we managed to get a
planner to work at the same time, which we present next.
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3.2 Reactive Planning

Using thedtected forces, we present a simple planner to illustrate our approach and
reach the end of a tunnel or a maze in spite of dust in the envrionment. This work is
motivated by billiard paper work, which proved that the end of a maze can be reached
with probability one by trying random actions. Hence, a simple planner is good enough,
and this will be verified in the results section.

The first planning method investigated is the following

(Vpre - N)

NN Y (16)

Vref = Vpre — 2

However, this method relies on accurate knowledge of the previous velocity v,
which may be innacurate. Furterhmore, it is not clear where to go when arriving against
the wall with a perpendicular velocity.

Since the previous reference velocity and collision forces are both expressed in body
frame, it is better to directly compute everything in body frame, with the unique goal of
going forward while slightly avoiding obstacles. Therefore, we define the next reference
velocity as the projection of the collision force onto a cone in the direction that we want
to go to

y = arctan(V ey, N) (17a)
Vet = R(Y)N (17b)

Finally, velocities may drift in vertical directions. Therefore, it may be better to
periodically go down to touch the gorund and update those velocities. We do so every 2
seconds and also bounce against the ground and the ceiling if we touch it. The planner
output is therefore given as in Eq. (17).

Here, N means a normal force from the wall, which can be estimated by the pro-
posed method. v, and v,.r respectively means a pre-collision speed and desired refer-
ence velocity.

For the rolling mode, since ground vehicles are bound by non-holonomic con-
straints, the Rollocopter cannot move toward yaxis as the flying mode and then (16)
cannot be applied directly. Therefore, when the collision is detected, the Rollocopter (i)
goes back in order to make enough space for turning, (ii) turns the direction based on
(16), and (iii) goes straight toward the direction of V..

In this bouncing action, the Rollocopter just goes back when the front collision
occurs. However, it is not efficient for the exploration. Therefore, it turns 90 deg and
goes along the wall when the front collision is detected.

3.3 Low-Level Control

Fig. 6 shows the block diagram of the low layer controller. Velocity reference can be
generated as (16) so that Rollocopter would bounce like a billiards[11].
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Table 2: Ground truth of the collision time (flying mode).

time 20s | 24s 30s 34s 53s 61s 67s 78s 85s 90s

part (angle)|[F (0°)[F (0°)|FW (0°)[FU (0°)|FL (45°)|FL (45°)[FL (45°)|FL (45°)|FL (45°)|FL (45°)

' gkl 5
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F
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Time [sec] Time [sec]

(a) External force on body (b) External torque on body

Input wrench

External torque on wheels [Nm]

10 20 30 40 50 60 70 80 90
Time [sec| Time |sec|

(c) External torque on wheels (d) Thrust force

Fig. 7: external force estimation (flying).

4 Results

4.1 External wrench estimation for Rollocopter

A force estimation experiment was conducted to evaluate the estimation method. The
Rollocpter was operated manually and hit against the wall with various attitude and
direction during the experiment. Here, high-pass filter is applied to remove the offset of
IMU.

Fig. 7 shows the experimental result of force estimation and Table 2 shows the
ground truth of the collision time. ”F”, "W, ”U”, and ”L” respectively means part
of collision front”, ’lower part”, “upper part’, and “left side” and bracketed contents
mean the yaw direction of the collision. In Fig. 7(a) and Fig. 7(b), almost all spikes
correspond with the time of the collision, which means collision detection worked
correctly. Moreover, by comparing the amplitude of each axis, force direction can be
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Table 3: Ground truth of the collision time (rolling).
time 16s | 26s 32s 34s | 41s | 52s | 78s
position (direction)||F (0°)|F (0°)|B (180°)|F (0°)|F (0°)|F (0°)|F (0°)

IS

S )

External force (rolling)
External moment Mz (rolling)

-

10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
‘Time [sec] Time [sec]

(a) External force on body (b) External torque on body

Fig. 8: External force estimation (rolling).

known. For example, collision at 30s mainly includes negative value of f, and f, be-
cause its front-upper part hit the wall.

However, at 53s, IMU based force estimation failed to detect the collision force here.
Although there is a small spike at 53s in Fig. 7(b), it is too small to distinguish from
the noise and the threshold for the collision detection is too severe. On the other hand,
estimated wheel torque succeeds in detecting this small forces whereas both body force
and torque estimation failed to detect the collision at 53s. The amplitude of the spike is
large enough to tell apart from the noise. Wheel torque estimation is good at detecting
small and low frequency forces, which is difficult for the IMU based estimation.

Another experiment for rolling mode is conducted. Fig. 8 shows the experimental
result and the ground truth of the collision time is on Table 3. Timing and the direction
of the estimated force is appropriate even in the rolling mode.

4.2 Contact point detection

Experiment for contact point detection is also conducted with rolling mode. Both wheels
of Rollocopter is collided from the front with the box whose height is 15 cm with the
rolling mode.

Fig. 9 shows the experimental result. Since the wheel radius is 26.7 cm, value of r,
should be around 0.117 m (= 26.7 — 15 cm). However, measured value is smaller than
the actual height. This is because the estimated contact point is based on the combined
force of the collision force and the normal force from the ground. Therefore, point
of contact is underestimated than the actual value. However, this result is enough to
distinguish whether a contact is caused by collision or by terrain.
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Fig. 9: contact point detection (experiments)

4.3 CIO: Collision Inertial Odometry

Fig. 10: CIO EKF results for flying Fig.11: CIO EKF results for ground mode.
mode.

4.4 CIO and planning

Going through a maze In this section, we show that it is possible to traverse a cluttered
environment using an IMU only. We leverage our contact detection and estimation, CIO,
and the reactive planner on our hybrid vehicle platform.

In Figure 13, we show the maze environment.

Note that the quick divergence of the EKF using the propagation of an IMU only,
without CIO. This indicates that the drone would have crashed without our algorithm,
demonstrating the effectiveness of our approach.

Bouncing Control Since the velocity can drift in vertical directions, it is beneficial
to impose preriodical touchdowns to obtain measurements of the vertical speed. This
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(a) Left part of the maze, including start po- (b) Right part of the maze, including end po-
sition. sition.

Fig. 13: Maze Environment

shows the advantages of perception-aware planning, where the planning module is de-
signed to improve state estimation properties.

5 Conclusion

5.1 Summary

In this paper, we have realized the force based navigation for ground-aerial hybrid ve-
hicles, Rollocopter. Not only IMU but also wheel encoders are used to estimate the ex-
ternal wrench on the Rollocopter and it worked both rolling and flight mode. Moreover,
appropriate encoder resolution is determined for the force estimation. By combining
these methods, Contact-based navigation for Rollocopter is achieved at both rolling and
flying mode. In this work, blind navigation for Rollocopter is demonstrated with force
sensor-less approach. Future work includes sensor-less contact force control based on
estimation method proposed in this paper Not only encoder specification design but also
IMU or other sensors should be also addressed.
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Fig. 15: Reactive Planning and Control using CIO and our reactive planner. We show
that it can autonomously bounce off walls and react to external forces, without visual
odometry.
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Fig. 14: Parallel velocity measurement updates. We show that we can accurately correct
the state estimation error after a collision.

5.2 Future work

In future work, we will exploit perception-aware planning to ensure that the drift is not
too high and that the state estimates are accurate enough to stabilize and contro.l the
drone. We will also compute theoretical time bounds for the state error to diverge, such
that we know exactly how long we can fly before requiring a collision or a landing.

Also, exciting new areas of research including active collision-based mapping. Us-
ing a prior map of the environment, it would be possible to localize the autonomous
agent in positions (instead of only in velocity as in this work), so a robot can traverse
a maze using the prior map and this novel CIO. This would enable autonomous robotis
such as Shapeshifter to be able to return to its original starting point in spite of loss of
visual odometry, assuming a prior map is available, which is the case since it was able
to get to this point in spac.e

Finally, improving the state estimator is possible and we will investigate this as
well. First, exploiting rigid body kinematics as in legged locomotion is possible. For in-
stance, after a collision, it is possible to exploit the model of the drone (for instance with
rigid wheels) to infer the resulting velocity, assuming a pivot point at the collision point
for instance. Also, collisions with soft surfaces, accounting for loss of energy, friction
against walls are also possible to be taken into account to improve the estimator. Finally,
our EKF is very basic and doesnt include biases. It would be interesting to investigated
error-state kalman filters, for instance the ones using manifold-type constraints, to im-
prove the accuracy of the estimator. Also, the covariance from the pereceived estimation
accuracy of the contact should be tuned, using machine learnign methods for instance.
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A Sensor decision

Wheel torque estimation includes 2 times pseudo differential and this causes the noise
on the estimated wheel torque. In this section, our purpose is to derive the magnitude of
the output quantization noise.

A.1 General formulation of noise prediction

Here, general discussion of the quantization noise amplitude 6{e[k]} caused by input
noise & is addressed based on discrete Lyapnov equation[43]. o{X} means standard
deviations of X. (18) is the discrete time state equation driven by white noise &[] at kth
time step.

xlk+1] = Ax[k] + bE[K], e[k] = Cx[k] + dE[K] (18)

x[k], e[k], A, B, C, and D each describes state vector, output vector, system matrix, input
matrix, output matrix, and feed forward matrix. From (18),
E{xE[k]} =E{A'xo+ Y A" /bE[K]} = 0. (19)

Jj=0

holds. E{X} means the expected value of X. Output noise covariance E{e[k]>} caused
by & can be derived as:

E{e[k]*} = cE{(x[K]x" [k]}c" + E{&[K]*}d>. (20)
In the steady state, since X;| = X; = X holds,
X1 =AXA" +bVeb" 1)

can be derived. Here, X; = E{(x[k]x [k]}, Vz = {&[k]*}. With the solution of this (21),
output quantization noise

o{elk]}* = E{e[k]*} = cXc +V:d* (22)

is calculated.

A.2 Quantization noise of wheel torque estimation

Former discussion can be applied to pseudo differential of quantization noise. When
the angular discretization width of encoder is ¢, the quantization error has uniform
distribution with maximum error of 1/¢ and probability density of 1/¢ in every pla:ce.
Since the quantization error can be assumed to be independent in every time sample
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with each other, it is a white noise with E{&[i]&[j]} = 0,i # j as long as S/N ratio large
enough. Therefore, (23) can be formulated as:

2 W21, q
E(EI} =0, E{EP) = [ Pax=T (3)
~a/29 12
Here, we assume the velocity and the acceleration detection using the pseudo dif-
ferential with time constant of 7.
The state equation of the pseudo differential s/(1 -+ 7s) driven by white noise can
be derived as:

1 1 1 1
(= ——x+-Ee=——x+- 24
X Tx+T'g',e Tx+T<§ (24)
Discretized state equation is:
k1] = e k] + (1 — e F)E[K] (25a)
1 1
el == ]+~ E[K (2sb)

Where T; is the sampling period.
With (21),(22), and (25b), quantization noise on the pseudo differential can be for-
mulated as:

Is
qPe

olef’=—F7——
612(e? + 1)

(26)

Where 7; is sampling period. By repeating this process 2 times, quantization noise on
acceleration can be obtained as:
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