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~35cm Telescope >0.5 deg FOV Nyquist sampled Focal Plane

* With next gen sCMOS focal plane

 Commercial ESPA class spacecraft

* Announced Dec 2017
Sony IMX 411 sensor
~150 Mpix
3.76um pixels
Backside
< 2e read noise

35 cm aperture, 4000mm EFL, FFoV 0.5deg RC Telescope
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Large format CMOS sensor

150 Mpix (with cover glass removed)
e 14,208*10,656 pixels

Backside illuminated
~90% peak QE
3.76um pix

40 Ke full well

2 Hz full frame rate
1.5e Read noise




Single digit uas astrometry

* /D for a 35cm telescope ~ 0.35 arcsec 10uas => centroiding to 1
part in 30,000.

* 3 major noise/error sources
* Photon noise (of ref stars) (Use wide FOV

e Optical distortion (use crowded field of stars to calibrate — high degree of
thermal stability so distortion calibration needed < 1/day)

* Prefer GEO or HEO altitude
» Detector imperfections (Use laser fringes to calibrate Pixel positions



Error as fraction of 3, /D

SubPixel detector calibration, centroid to 10A/D
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Optics Field Distortion

 Also we found that 1/20 optical figure errors are

« Optics field distortion has several sources also well modeld by the 9" order poly. (optic
- Perfectly fabricated optics will have closes to focal has the most beam walk)
distortion. (part of design) « Made errors ~2X worse with 1/20
» Optics are not perfectly manufactured. « Chromatic errors were dealt with by limiting
(1/20 errors 1/f3) to be expected spectrum to 500~750nm. And designing the
- Possible chromatic errors when lenses are  System accordingly.
used. « What matters is shift in position when
 All in modeling, found distortion of the design star s temperature c,:hange_s. (offsets don't
can be modeled to < 5uas with 9t order poly. matter because we’re looking for periodic

motion)
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Astrometric Error Budget

* 4 uas astrometry of a

bright target star against

11~16 mag reference
starsin 1 hr
e 100~200 ref stars

Input parameters:

Diameter
Wavelength
FOV

#pix (41/D)
Total pix 1D
Detector cal
# dithers

Detect error
Detect error

Field dist error

Total QE

Bright. ref star
Faint. ref star

0.35 m

6.50E-07 m

31.92 arcmin
2.2
11000

1.00E-04 pixels

100 per hr

1.00E-05 pix/hr

1.74 uas
1.74 puas

0.7

11 mag

Target star error budget (1 hr):

Target star mag 6 mag
Photon noise 1.23 puas
Detector geometry 1.74 pas
Optics distrotion 1.74 pas
Target total noise 2.75 pas
Reference star error budget (1 hr):
Ref star mag ~11-16 mag
Avg # of stars 200
Photon flux 1.36E+06 ph/sec
Ref star flux equiv 8 mag
Ref photon noise 2.74 pas
Ref detector noise 0.184 uas
Ref star distort noise 0.184 puas
Total ref star noise 2.75 uas
16 mag Total diff _astrom. error: 3.89 pas



Thermal Control

* We simulated a thermal control system (for flight) that turned out to
be very capable.

* SSO orbit was chosen (no eclipe)
* Examined 1 orbit in SSO (heating by Earth changed)
e Detector stable to < 0.5 mK

* Telescope optics and structure stable to ~ 10mK.
* SiC structure

* Detector stable to < 5uas (over field)
* Distortion stable to < 5uas (over field)



Spacecraft capabilities needed/Orbit etc

* The focal plane can be read out quickly (compared to CCDs) but because its
SO Iarie it does take time. (3 hz). The spacecraft attitude has to be stable
to < /D on the time scale to read the array. (ideally 0.25~ 0.5 A/D)

* JPLU's Asteria achieved ( on a cubesat budget) the type of pointing stability
we want.

* This may require a separate ~6cm telescope with sCMOS focal plane as a fine
guidance camera.

e Default SSO orbit. Thermal design to aim for 1 digit mK sensor stability and
< 10 mK telescope thermal stability. (SiC telescope thermal stability is
slightly better at low Temp (<ZOOK¥, reducing heater power needed to
maintain thermal stabilty.

 Sufficient battery energy to maintain thermal control during eclipse of S/C in SSO
orbit for part of the year.



Commercial Space Industry has dramatically lowered the cost
of ESPA class spacecraft.

* Dozens of ESPA class S/C now orbit the earth providing Earth sensing data for
Business/Industry. Many of these are “mass produced” in quantities ~10. Mostly they
use cubesat parts. (some eg reaction wheels, scaled up for microsats)

* Mass produced satellites with 30~35cm telescopes and CMOS focal planes can be
below S10M/each.

* One of a kind science missions will be more expensive, but affordable

* Unlike traditional NASA and DoD missions, the spacecraft bus for commercial satellites
are bid “fixed price”. Major components such as small (30~35cm telescopes and
CCD/CMOS focal planes are also bid fixed price).

* Reducing the mission cost risk.

* Life time (on their website) advertised as ~5 yrs. (very different from “student cubesat”
projects of 10yrs ago)

* The very low cost of cubesat components, lets one think of redundant components (eg reaction
wheels, star trackers, solar panels) to ensure 3~5 yr mission life.

 BUT the cost of these commercial missions are NOT in the NASA/DoD data base.
(in some cases historical costs are proprietary, (bid fixed price), NASA Centers and
NASA costing may or may not accept these low costs.



Exoplanet Science /Mission Cost

* 6 nearby stars down to 1 Mearth in 1 AU equiv
orbit

e ~20 stars down to 2 Mearth in 1 AU equiv orbit

* Team X costing exercise (~3 cost numbers)

* Grass roots (based on ROM quotes)
* ~$24M (all costs include 30% reserve)

* 50% cost (based on historical data)
o ~S40M

« 70% cost ~ S44M (70% prob mission will be
completed within this cost)
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