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* Launch: August 2022
— 3.5 year cruise
— 21 months orbital science operations
» Target: Metallic Asteroid Psyche
— Is it the core of a planet interrupted by impacts during
formation?

* JPL-Maxar hybrid spacecraft
— Maxar provides the SEP Chassis
— JPL provides command and data handling, fault
protection, flight software, autonomous operations
* SPT-140 Electric Propulsion System
— Used for cruise and asteroid proximity operations
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More information about the mission will be presented by S. Snyder, IEPC-2019-XXX (XXX-day).



Motivation Behind the Modeling and
Simulation Work

. . SPT-140 Ground Tests at NASA GRC
* Increase of thrust with facility 1.02

backpressure well-known for £ 1.00 [ +
decades in Hall thrusters % 098 %% %ﬂ
— occurs most prominently with Z 0.96 ﬂTT-[% |
externally-mounted cathodes g 0.94 %}
— limited understanding prohibits 2 0.0 YTl
performance predictions in space “ 0.9 O 45kW
0 10 20 30 40.00°

Pressure (Torr Xe)

* Uncertainty on effects of backpressure affects adversely
performance and lifetime margins
* Significant differences between operating conditions in ground tests

and Psyche further increase uncertainty
— throttle profiles different
— magnet current higher than in ground tests



Modeling, Supported by Experiments, Reduces Risk
in Performance and Lifetime Predictions for Psyche.

0 Ve
« Hall2De [1] employed for the numerical !
simulations

Acceleration zone
(loosely defined)

— 2-D (r-z) axisymmetric domain

— conservation laws discretized on a

magnetic field-aligned mesh (MFAM) /\
— all physics models based on first

principles except for the anomalous

Shape and location
determined semi-
empirically

collision frequency (v,), which is
usually empirically defined

— LIF diagnostics [2] used to specify
v, in the SPT-140 simulations

[1] First journal article on Hall2De: Mikellides, I. G., and Katz, 1., "Simulation of Hall-effect
Plasma Accelerators on a Magnetic-field-aligned Mesh," Physical Review E, Vol. 86, No. 4, 2012,
pp. 046703 (1-17).

[2] LIF diagnostics performed by V. Chaplin, IEPC-2019-XXX (XXX-day).
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[1] Hall2De simulations performed by A. Lopez Ortega, IEPC-2019-XXX (XXX-day).
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[1] Hall2De simulations performed by A. Lopez Ortega, IEPC-2019-XXX (XXX-day).



Understanding Gained from 2-D (r-z) Axisymmetric #a
Simulations [1] with the Hall2De Code v

3 10 - LIF NOT available
SO USRI SOOI SO /,// .................. u
el LIF available

300 .................. __________________ // __________________ __________________ »

45kW

0 Experlment

| O Simulation
270 i i ; i : : :

Pressure (Torr Xe)

[1] Hall2De simulations performed by A. Lopez Ortega, IEPC-2019-XXX (XXX-day).
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[1] Hall2De simulations performed by A. Lopez Ortega, IEPC-2019-XXX (XXX-day).
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Thrust, T (mN)
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Analytical Model of the Thrust (T) Developed to Understand \
the Numerical Simulation Results and Beyond... -

Contribution to thrust by fast neutrals

Contribution to thrust by ions

Ion energy ~ u;?

\,

(

T = Tref[1 o(dp/ (I)A)][Cl + nppo?f ceX(Cnl T Cn, Bnrlref)]

T \
Thruster neutrals T

Facility neutrals .



Analytical Model of the Thrust (T) Developed to Understand
the Numerical Simulation Results and Beyond...
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Thrust, T (mN)
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Analytical Model of the Thrust (T) Developed to Understand &
the Numerical Simulation Results and Beyond... <
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Analytical Model of the Thrust (T) Developed to Understand & a
the Numerical Simulation Results and Beyond... : -
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Analytical Model of the Thrust (T) Developed to Understand
the Numerical Simulation Results and Beyond...
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Analytical Model of the Thrust (T) Developed to Understand & a
the Numerical Simulation Results and Beyond... <
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Analytical Model of the Thrust (T) Developed to Understand & a
the Numerical Simulation Results and Beyond... < '
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Summary Remarks

* Ground tests of the SPT-140 for NASA’s Psyche mission showed
thrust increased by as much as 7.2% when the facility pressure
increased by ~10x

* Simulations with the 2-D axisymmetric code Hall2De reveal

— Excellent agreement with test data at intermediate pressures (9-15

uTorr), where no displacement of the acceleration zone was measured
— Without movement of the acceleration zone the comparison degraded

at lower pressures, where no measurements were possible
* New thrust model suggests azimuthal asymmetries 1n the cathode
electron flow could be the source of the steep rise of the thrust with
backpressure at the lowest pressures (<9 uTorr)
— Explains past measurements with the H6 in which thrust sensitivity

decreased as external cathode was moved closer to the channel
— Explains insensitivity of thrust to backpressure in Hall thrusters with

centrally-mounted cathodes



Numerical Investigations of Background Pressure
Effects and Channel Erosion in the SPT-140 Hall
Thruster for the Psyche Mission

e Alejandro Lopez Ortega
* loannis G. Mikellides

* Vernon H. Chaplin

e John Steven Snyder

* Gioavanni Lenguito
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Target: Metallic Asteroid Psyche

— Is it the core of a planet interrupted by
impacts during formation?

JPL-Maxar hybrid spacecraft

— Maxar provides the Solar Electric Propulsion
Chassis

— JPL provides command and data handling,
fault protection, flight software,
autonomous operations

SPT-140 Electric Propulsion System




Trajectory

Launch August 2022
3.5 year cruise

21 months orbital science
operations

EP system used for cruise and
asteroid proximity operations

SPT-140 system qualified for
GEO missions at 3.0 and 4.5 kW
— Psyche mission requires

significant operation at lower
powers
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Motivation

* SPT-140 shows a performance dependence on test facility background
pressure (Snyder et al., JPC 2018)

— Can modeling and simulation replicate experimental trends for varying
background pressure?

— Can modeling and simulation be used to predict performance in space for
the power range used in the mission?

* Can we predict lifetime in space?

— Can modeling and simulation predict erosion rates at the conditions of the
long-duration wear test?

— What are the expected erosion rates in space?
— How does erosion change with time and operating condition?
— What is the effect of erosion of the channel walls on thruster performance?



« The 2-D axisymmetric code Hall2De is a physics-based plasma and erosion solver that began development
at JPL in 2008 [1] to support the design and life qualification of Hall thrusters for NASA science missions.
* Discretization of all conservation laws on a magnetic field-aligned mesh (MFAM)
« Two components of the electron current density field accounted for in Ohm’s law
» Sheath physics modeled in appropriate boundary conditions
 No statistical noise in the numerical solution of the heavy-species conservation laws

[1] First journal article on Hall2De: Mikellides, |I. G., and Katz, 1., "Simulation of Hall-effect Plasma Accelerators on a Magnetic-field-aligned Mesh," Physical Review E, Vol. 86,
No. 4, 2012, pp. 046703 (1-17).



Comparisons between numerical simulations and
experiments: plasma parameters

* Numerical simulations are compared with non-intrusive measurements of the ion
velocity (2-D and along the channel centerline) obtained with laser-induced fluorescence

(LIF)
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*Comparisons for other operating conditions are summarized in the paper
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Comparisons between numerical simulations and
experiments: plasma parameters
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MAIN TAKEAWAYS

Good agreement between simulations and
experiments

We do not observe a large shift
downstream of the acceleration region at
lower background pressures (up to the
lowest pressure that could be achieved in
the vacuum facility)

At 4.5 kW, there is a 1-2 mm shift
downstream between 30 uTorr and 15
uTorr but no shift observed between 15
uTorr and 9 uTorr




Comparisons between numerical simulations and
experiments: performance
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Comparisons between numerical simulations and
experiments: performance

305 4.5 KW - 6 A magnet current 305 4.5 KW - 5.25 A magnet current
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* Computed thrust agrees with measurements at locations for which the simulations
could be validated by LIF

e Simulations show less steep decrease in thrust at low background pressure than
measurements




MAIN TAKEAWAYS

Computed thrust agrees with measurements at locations for which the simulations
could be validated by LIF

Thrust does not decay with background pressure at 1.0 kW because mass flow rate
increases by 10 % between 30 uTorr and 3 pTorr. In other operating conditions, mass
flow rate stays approximately constant
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305 4.5 KW - 6 A magnet current
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behavior in vacuum based on location of
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axisymmetric effects:

Mikellides, I. G., et al., IEPC 2019-410

Is it possible that acceleration region
moves further downstream at very low
background pressure?

How far the acceleration region needs to
move in order to achieve a thrust value
for vacuum that is consistent with the

experimental trend?
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4.5 kW - 6 A magnet current
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Predicting performance in vacuum
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No significant change in erosion rates
at the channel walls between the two
solutions at vacuum
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Hall2De predictions of erosion rates at wear test
conditions match measurements
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Prediction of channel erosion for a simplified
mission profile for a single thruster (+ 50% margin)
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Prediction of channel erosion for a simplified
mission profile for a single thruster (+ 50% margin)
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Prediction of time-dependent performance in

space

MAIN TAKEAWAYS

Thrust decay rate was very different in life
test compared to the flight data

*  Acceleration zone moves upstream with
increased pressure

. This causes faster erosion of the
thruster walls

*  Thrust decreases due to greater wall
erosion because of increased
divergence losses

*  As erosion rates decrease and
especially after location of acceleration
stops eroding, thrust becomes
approximately constant

Simulations do a very good job of capturing
the laboratory and flight data

Higher expected thrust with time beneficial
for mission planning (i.e., less propellant
necessary)
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Prediction of time-dependent performance in
space

MAIN TAKEAWAYS

Thrust decay rate was very different in life
test compared to the flight data

*  Acceleration zone moves upstream with
increased pressure

. This causes faster erosion of the
thruster walls

*  Thrust decreases due to greater wall
erosion because of increased
divergence losses

*  As erosion rates decrease and
especially after location of acceleration
stops eroding, thrust becomes
approximately constant

Simulations do a very good job of capturing
the laboratory and flight data

Higher expected thrust with time beneficial
for mission planning (i.e., less propellant Oh
necessary)
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Prediction of time-dependent performance in
space

MAIN TAKEAWAYS

Thrust decay rate was very different in life
test compared to the flight data

*  Acceleration zone moves upstream with
increased pressure

. This causes faster erosion of the
thruster walls

*  Thrust decreases due to greater wall
erosion because of increased
divergence losses

*  As erosion rates decrease and
especially after location of acceleration
stops eroding, thrust becomes
approximately constant

Simulations do a very good job of capturing
the laboratory and flight data

Higher expected thrust with time beneficial
for mission planning (i.e., less propellant 2500 h
necessary)
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Prediction of time-dependent performance in
space

MAIN TAKEAWAYS

Thrust decay rate was very different in life
test compared to the flight data

*  Acceleration zone moves upstream with
increased pressure

. This causes faster erosion of the
thruster walls

*  Thrust decreases due to greater wall
erosion because of increased
divergence losses

*  As erosion rates decrease and
especially after location of acceleration
stops eroding, thrust becomes
approximately constant

Simulations do a very good job of capturing
the laboratory and flight data

Higher expected thrust with time beneficial
for mission planning (i.e., less propellant 4000 h
necessary)
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Concluding remarks

 SPT-140 shows a performance dependence on test facility background pressure
(Snyder et al., JPC 2018)

— Can modeling and simulation replicate experimental trends for varying background
pressure? Yes, at background pressures for which simulations have been validated by
LIF measurements

— Can modeling and simulation be used to predict performance in space for the power
range used in the mission? Yes. However some assumptions may be necessary (i.e.,
assume a downstream shift in acceleration region or non-axisymmetric effects)

e Can we predict lifetime in space?

— Can modeling and simulation predict erosion rates at the conditions of the long-duration
wear test? Yes. Excellent agreement between simulation and wear test channel profiles

— What are the expected erosion rates in space? Predicted erosion rates in space for
Psyche mission profile + 50% margin. Channel not completely eroded at end of mission

— How does erosion change with time and operating condition? Erosion rates become
lower with time and at low power operating conditions

— What is the effect of erosion of the channel walls on thruster performance? Identified
that decay of thrust in vacuum conditions as a function of time is less than that
measured during wear test



