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Problem:

» Existing remote sensing platforms have limited ability to retrieve high-
resolution, unbiased water vapor profiles in the presence of clouds

* Problem recognized by NWP community (WMO, 2018):

“Critical atmospheric variables that are not adequately measured by current
or planned systems are temperature and humidity profiles of adequate
vertical resolution in cloudy areas.”

Proposed solution:

» Utilize range-resolved radar signal and frequency-dependent attenuation on
flank of 183 GHz water vapor absorption line, so-called differential absorption
radar (DAR)

» Microwave analog of differential absorption lidar (DIAL) — but can measure
inside clouds and precipitation (complementary observations)
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DAR principle: Exploit the strong frequency dependence of atmospheric
attenuation near H,0 absorption line to derive range-resolved maps of humidity

* Near the 183 GHz line, atmospheric absorption Millimeter-wave atmospheric absorption coefficient

dominated by water vapor:
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Connection to Decadal Survey
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Regularized least squares retrieval

« Since VIPR Tx bandwidth is constrained, we
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Direct inversion (problem is linear in state vector)
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« VIPR deployed from April 2-14, 2019

Calibration measurements

* Multiple convective systems passed through _ sphere at 500 m range

during the intensive observation period

« Performed radar calibration with high-sphericity
calibration targets

* 4x daily radiosonde launches at ARM —
supplemented with JPL supplied sondes
(launched at will)

« Additional ARM humidity measurements include
Raman lidar, passive microwave and infrared
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2 transmitted frequencies — 167 and 174.8 GHz

Radar parameters «  Chirp bandwidth = 10 MHz (15 m range res) over 1 ms
used at ARM « 2000 pulses averaged per frequency
« Time resolution ~ 5 sec

April 3-4, 2019 April 6, 2019

ity (dBZ)

¢
=)
fl

20 21 22

| )
k -40
23 -50

22
Time (UTC hours) Time (UTC hours)

I 14 €

8} 81 ! 122
' ' ' ! ! =

< 6 6 R
z | NIRRT -
% 2 | ' 2F E“J'M Iﬂlm'\ :lhl i | 4 g
Ll ) . | =

f i k || 5%‘!@ i |th“ IL v rw‘“. | | E““M mw “H 2 %

0 0 1 5 045 19 20 0

23



-

Jet Propulsion Laboratory
California Institute of Technology

Measurement and retrieval time series
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Radiosonde comparisons
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In-cloud profiling summary statistics
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» Measure integrated absorption up to cloud base — proxy for airborne/spaceborne total column water
vapor measurement

» Precipitable water vapor (PWV) product validated against both radiosondes and the ARM water vapor

Raman lidar
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Past and present:

Development of first all solid-state cloud radar above W-band
Demonstrated first-ever remotely sensed profiles of water vapor inside of clouds

Recent field-deployment at ARM SGP for validation of humidity profiling and
column water vapor products

Instrument hardware modified for aircraft deployment — flights aboard Twin Otter
aircraft ongoing

Future outlook and prospects for space:

Potential solution to hydrometeor bias = extending transmit band to 155 GHz
Humidity profiling from space with order 100 W transmitter (technical challenge)

Lower power transmitter (1-10 W) can perform TCWV measurements with
ubiquitous temporal, surface, and cloud coverage

Coordinated field campaign with water vapor DIAL, passive sounders, and in-
situ sensors needed to characterize instrument synergy and combined capability
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