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Teaching Materials Science to Al

- What We Want: Given an arbitrary number of
heterogeneous observations about the universe,
rationalize these observations with a self-consistent
worldview, with which we may make predictions
about unseen phenomena.

- “Here are some examples of x and y. Can you

tell me f(x), for y = f(x)?”

) CHEED §) X3 Xs Y1 Y2

- x: “features”
« y: “targets”
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The Importance of Feature Selection
Where Do The x's Come From?
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S. Lee, et al., Sci. Tech. Adv. Mater. 25(1), 972-978 (2019)
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Key Concept
Features in machine learning should come from both experimental
observations, and outputs of physics-based models.
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PyCalphad = Python + CALculation of PHAse Diagrams

« Using physics-based models, PyCalphad predicts
properties of materials, including

 Transition (e.g., melt) temperatures, speciation,
solidification, degradation, corrosion, etc.

- Chemical processes as a function of temperature,

pressure, and composition
{/} « Supports uncertainty quantification

* Free and open source at https://pycalphad.org

Otis, R. and Liu, Z.-K., 2017. “pycalphad: CALPHAD-based Computational
Thermodynamics in Python.” Journal of Open Research Software, 5(1), p.1. )
doi: http://doi.org/10.5334/jors.140 jpl.nasa.gov



https://pycalphad.org/
http://doi.org/10.5334/jors.140
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https://espei.org/

Uncertainty Propagation for Materials
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- With PyCalphad/ESPEl-powered UQ, all ~ Fos —’/\ =i
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https://pduq.readthedocs.io/
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https://github.com/AdditiveModeling/SolidificationMicrostructure

Motivating Sensitivity for Calphad Modeling

* Q: For a given Calphad model, what experiments
should be performed to improve the prediction
quality?

* In principle, there are maximally-informative
experiments for every degree of freedom (the
“parameters”) in a Calphad model.

* Quantitative sensitivity estimates tell us how to
reduce uncertainty.

jpl.nasa.gov



Defining Local Sensitivity of the Model Error

oL
Sk = Apy P

 Sensitivity has two components
- Parameter Variance: “easy” to guess, or calculate
« Error Gradient: requires low-level access to Calphad solver

A. Mlller et al 2019 Modelling Simul. Mater. Sci. Eng. 27 024001

jpl.nasa.gov
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Figure 1. Schematic procedure for calculating the error in phase equilibrium data. & and B are

(b)
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B. Bocklund, et al. ESPEI for efficient thermodynamic database development, modification, and uncertainty
quantification: Application to Cu—-Mg. MRS Communications, 9(2), 618-627 (2019). doi:10.1557/mrc.2019.59




Definition of Chemical Potentials

- Hillert (2008, p. 77) derived expressions for the chemical potentials in a
few special cases, but not for the general case

- We can consider the Lagrangian definition, where the chemical
potentials are the Lagrange multipliers of the mass balance constraints

* For a feasible design point, the first-order optimality condition is
obeyed: Au = Vg ; A is the “constraint Jacobian” and Vg is the Gibbs
energy gradient

* How is A defined?



Definition of Chemical Potentials (2)
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In general, A can include other constraints, e.g., charge balance and
phase amount balance

A is a function of x in the case of vacancies or two-sublattice ionic liquids

U=

T4

)
Ua
Up

Each column of A relates to a constraint
Each row of A relates to a degree of freedom (P, T,yi)
Example: Consider two-sublattice phase of form (A,B):(A,B)

; (t; are discarded)



Definition of Chemical Potentials (3)

In general, Au = Vg can be an over-determined system if some
constraints are redundant

Choose least-squares solution: u = (AAT)"1AVg
Assume A is independent of p (true for all published models)

Then 2% £ = (4AT)714 a(Vpg)

Defined for every feasible design point



Chemical Potential Gradient

If we know the equilibrium solution, then we know 2

This enables expressions for the full likelihood gradlent, a o

S = Apkaa—ka ; can set Ap,, as standard deviation

Sensitivity is then defined as the amount the error changes if a
parameter is increased by one standard deviation




Discussion of the Tie-line/ZPF Error

. o TN—1 4 9(V9)
= (AA") A—ap (for constant A)

- For fixed X-T-P, a%‘” will often be a
constant
© g=[.]1+(@1+p2T)xaxp + [...]
* In many cases, the error gradient for a
tie-line will be a constant, with a

discontinuity at zero

ZPF Error
(@)

* For ternaries, the behavior is the same p1

Parameter Value
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Conclusion

- CALPHAD model sensitivity estimates can be calculated
today, using existing commercial or open-source
packages, for simple systems

 In many cases, the sensitivity will have a simple linear
form

 Analytic error gradients will enable faster (but still global)
database optimization with MCMC

- Sensitivity calculations may help build more robust
CALPHAD models in the future

jpl.nasa.gov



Jet Propulsion Laboratory
California Institute of Technology

jpl.nasa.gov



The Path to Al for Materials

- We have an approach for optimizing materials
models, but this is not yet “Al” — a lot of human
decision-making is required for each model

* Model structural decisions are discrete actions, with
complex interdependencies

- Sometimes called “researcher degrees of freedom”

« Meta-learning (Wade Shen, Data-Driven Discovery
of Models, 2019)

https://www.youtube.com/watch?v=wNIudAklinvQ

jpl.nasa.gov


https://www.youtube.com/watch?v=wNIudAklnvQ

AlphaGo (2016)
ARTICLE

doi:10.1038/nature16961

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang"*, Chris J. Maddison', Arthur Guez!, Laurent Sifre!, George van den Driessche',

Julian Schrittwieser!, Ioannis Antonoglou!, Veda Panneershelvam!, Marc Lanctot!, Sander Dieleman', Dominik Grewe!,
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap', Madeleine Leach!, Koray Kavukcuoglu!,

Thore Graepel' & Demis Hassabis!

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8°% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

jpl.nasa.gov



Monte Carlo Tree Search (MCTS)

Selection Expansion Simulation Backpropagation
@ () @ @ @ () @ ()
@@@@@ @@@@@ @@@@@ @@@@@
) @ ) @
T. Dieb, et al. MRS Communications, 9(2), 532-536 (2019) Image: Mciura, Dicksonlaw583 [CC BY-SA 4.0]
doi:10.1557/mrc.2019.40 https://en.wikipedia.org/wiki/Monte Carlo tree search
Key Concepts

MCMC: Continuous action space (parameter values)
MCTS: Discrete action space (game moves)
“Policy function”: How the Al (the “agent”) decides

jpl.nasa.gov


https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
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“TDB Mixer’: How to Teach the Game

Uses statistics from TDBDB dataset [*]
Randomly chooses phases, sublattice
model, and parameters

Generates a TDB

Calculates the phase diagram

Adds noise to the calculated predictions
Writes ESPEI JSON

[*] A. van de Wallle, et al., Calphad 61, 173-178 (2018)
doi: 10.1016/j.calphad.2018.04.003
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A Framework for Materials Al

« Contemporary Approach

Single-shot optimization without model search

* Proposed

Design “game” corresponding to modeling task
Train on a class of synthetic problems

MCTS for model search

Apply policy for starting model (fast)

MCMC to be quantitative, and to get UQ

For future problems, repeat only last two steps

jpl.nasa.gov



