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Why is ML for Materials interesting?

V. Tshitoyan, et al., Nature 571, 95-98 (2019)
doi: 10.1038/s41586-019-1335-8

J. Yeon, et al., Calphad 64, 267-271 (2019)
doi: 10.1016/j.calphad.2018.12.008

B. L. DeCost, et al., Microsc. Microanal 25(1), 21–29 (2019)
doi: 10.1017/S1431927618015635

L. Johnson, et al., Acta Mater. 176, 199-210 (2019)
doi: 10.1016/j.actamat.2019.07.005.

Convolutional Neural Nets
NLP/Unsupervised word embeddings

Gaussian Process Regression

Neural Networks
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Teaching Materials Science to AI

• What We Want: Given an arbitrary number of 
heterogeneous observations about the universe, 
rationalize these observations with a self-consistent 
worldview, with which we may make predictions 
about unseen phenomena.

• “Here are some examples of x and y. Can you 
tell me f(x), for y = f(x)?”

• x: “features”
• y: “targets”

x1 x2 x3 x4 y1 y2
0.2 -10 “red” 6.8 0.3 -7
… … … … … …
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The Importance of Feature Selection
Where Do The x’s Come From? 

S. Lee, et al., Sci. Tech. Adv. Mater. 25(1), 972-978 (2019)
doi: 10.1080/14686996.2019.1671140

Key Concept
Features in machine learning should come from both experimental 
observations, and outputs of physics-based models.
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PyCalphad = Python + CALculation of PHAse Diagrams

• Using physics-based models, PyCalphad predicts 
properties of materials, including

• Transition (e.g., melt) temperatures, speciation, 
solidification, degradation, corrosion, etc.

• Chemical processes as a function of temperature, 
pressure, and composition

• Supports uncertainty quantification
• Free and open source at https://pycalphad.org

Otis, R. and Liu, Z.-K., 2017. “pycalphad: CALPHAD-based Computational 
Thermodynamics in Python.” Journal of Open Research Software, 5(1), p.1. 
doi: http://doi.org/10.5334/jors.140

https://pycalphad.org/
http://doi.org/10.5334/jors.140
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PyCalphad and ESPEI

• ESPEI uses PyCalphad as a 
kernel in a large Monte Carlo 
simulation

• Tens of thousands of 
candidate models on 
HPC

• Output is new model + full 
Uncertainty Quantification

• Free and open source at 
https://espei.org

ESPEI

Full Model UQ
B. Bocklund, et al. “ESPEI for efficient 
thermodynamic database development, 
modification, and uncertainty quantification: 
Application to Cu–Mg.” MRS Communications, 9(2), 
618-627 (2019). doi:10.1557/mrc.2019.59

Ab initio phase diagram* 
(starting point)

*Except liquid

https://espei.org/
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Uncertainty Propagation for Materials

• With PyCalphad/ESPEI-powered UQ, all 
chemical predictions inherit “error bars”

• Model uncertainty is based on the 
experimental measurements

• Uncertainty propagation work in 
collaboration with Argonne National 
Laboratory

• Free and open source at 
https://pduq.readthedocs.io/

Paulson, N. H., Bocklund, B. J., Otis, R. A., Liu, Z. K., & Stan, M. “Quantified 
Uncertainty in Thermodynamic Modeling for Materials Design,” Acta Materialia,
174 (2019) 9-15.

https://pduq.readthedocs.io/
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PyCalphad Community Use Cases Beyond UQ/UP

Scott Peters and Prof. Dan Lewis
Rensselaer Polytechnic Institute
https://github.com/AdditiveModeling/
SolidificationMicrostructure

S. Yang, et al., J. Mat. Sci. 54, 10297–10311 (2019)
doi: 10.1007/s10853-019-03639-w

Y. Shang, et al., Materialia 8, 100500 (2019)
doi: 10.1016/j.mtla.2019.100500

Phase-Field Interfacial Energy Two-phase Elastic Constants

https://github.com/AdditiveModeling/SolidificationMicrostructure
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Motivating Sensitivity for Calphad Modeling

• Q: For a given Calphad model, what experiments 
should be performed to improve the prediction 
quality?

• In principle, there are maximally-informative 
experiments for every degree of freedom (the 
“parameters”) in a Calphad model.

• Quantitative sensitivity estimates tell us how to 
reduce uncertainty.
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Defining Local Sensitivity of the Model Error

• Sensitivity has two components
• Parameter Variance: “easy” to guess, or calculate
• Error Gradient: requires low-level access to Calphad solver

A. Müller et al 2019 Modelling Simul. Mater. Sci. Eng. 27 024001

𝑆! = ∆𝑝!
"#
"$$



B. Bocklund, et al. ESPEI for efficient thermodynamic database development, modification, and uncertainty 
quantification: Application to Cu–Mg. MRS Communications, 9(2), 618-627 (2019). doi:10.1557/mrc.2019.59



Definition of Chemical Potentials

• Hillert (2008, p. 77) derived expressions for the chemical potentials in a 
few special cases, but not for the general case

• We can consider the Lagrangian definition, where the chemical 
potentials are the Lagrange multipliers of the mass balance constraints

• For a feasible design point, the first-order optimality condition is 
obeyed: 𝐴𝜇 = 𝛻𝑔 ; 𝐴 is the “constraint Jacobian” and 𝛻𝑔 is the Gibbs 
energy gradient

• How is 𝑨 defined?



Definition of Chemical Potentials (2)

• Each column of 𝐴 relates to a constraint
• Each row of 𝐴 relates to a degree of freedom (P,T,yi)
• Example: Consider two-sublattice phase of form (A,B):(A,B)

• 𝐴! =
1 1

1 1
1 1

1 1

; 𝜇 =

𝜏"
𝜏#
𝜇$
𝜇%

; (𝜏& are discarded)

• In general, 𝐴 can include other constraints, e.g., charge balance and 
phase amount balance

• 𝐴 is a function of x in the case of vacancies or two-sublattice ionic liquids



Definition of Chemical Potentials (3)

• In general, 𝐴𝜇 = 𝛻𝑔 can be an over-determined system if some 
constraints are redundant

• Choose least-squares solution: 𝜇 = 𝐴𝐴! "#𝐴𝛻𝑔
• Assume 𝐴 is independent of p (true for all published models)

• Then $%
$&
= 𝐴𝐴! "#𝐴 $(())

$&

• Defined for every feasible design point



Chemical Potential Gradient

• If we know the equilibrium solution, then we know $%
$&

• This enables expressions for the full likelihood gradient, $+$&!
• 𝑆, = ∆𝑝,

$+
$&!

; can set ∆𝑝, as standard deviation

• Sensitivity is then defined as the amount the error changes if a 
parameter is increased by one standard deviation



Discussion of the Tie-line/ZPF Error

• $%
$&
= 𝐴𝐴! "#𝐴 $(())

$&
(for constant 𝐴)

• For fixed X-T-P, $(())$& will often be a 
constant

• 𝑔 = … + 𝑝! + 𝑝"𝑇 𝑥#𝑥$ + [… ]
• In many cases, the error gradient for a 

tie-line will be a constant, with a 
discontinuity at zero

• For ternaries, the behavior is the same
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Conclusion

• CALPHAD model sensitivity estimates can be calculated 
today, using existing commercial or open-source 
packages, for simple systems

• In many cases, the sensitivity will have a simple linear 
form

• Analytic error gradients will enable faster (but still global) 
database optimization with MCMC

• Sensitivity calculations may help build more robust 
CALPHAD models in the future



jpl.nasa.gov



jpl.nasa.gov

The Path to AI for Materials

• We have an approach for optimizing materials 
models, but this is not yet “AI” – a lot of human 
decision-making is required for each model

• Model structural decisions are discrete actions, with 
complex interdependencies

• Sometimes called “researcher degrees of freedom”
• Meta-learning (Wade Shen, Data-Driven Discovery 

of Models, 2019) 
https://www.youtube.com/watch?v=wNIudAklnvQ

https://www.youtube.com/watch?v=wNIudAklnvQ
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AlphaGo (2016)
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Monte Carlo Tree Search (MCTS)

Image: Mciura, Dicksonlaw583 [CC BY-SA 4.0]
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

Key Concepts
MCMC: Continuous action space (parameter values)
MCTS:  Discrete action space (game moves)
“Policy function”: How the AI (the “agent”) decides

T. Dieb, et al. MRS Communications, 9(2), 532-536 (2019)
doi:10.1557/mrc.2019.40

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
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“TDB Mixer”: How to Teach the Game

Random seed
“0fb2c77e0f…”

Random seed
“ec137b66…”

1. Uses statistics from TDBDB dataset [*]
2. Randomly chooses phases, sublattice 

model, and parameters
3. Generates a TDB
4. Calculates the phase diagram
5. Adds noise to the calculated predictions
6. Writes ESPEI JSON

[*] A. van de Walle, et al., Calphad 61, 173-178 (2018)
doi: 10.1016/j.calphad.2018.04.003
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A Framework for Materials AI

• Contemporary Approach
• Single-shot optimization without model search

• Proposed
• Design “game” corresponding to modeling task
• Train on a class of synthetic problems
• MCTS for model search
• Apply policy for starting model (fast)
• MCMC to be quantitative, and to get UQ
• For future problems, repeat only last two steps


