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Abstract—The Mars Science Laboratory (MSL) Telecom Op-
erations Team at the Jet Propulsion Laboratory (JPL) has
implemented a machine learning system in order to automate
the anomaly detection process as a part of daily operations.
Machine learning enables reliable detection of anomalies in
Telecom-related telemetry and automated reporting of Telecom
subsystem status, resulting in an 90% reduction in team work-
load and improved anomaly detection reliability.

At present, machine learning methods are used to detect:

1. Anomalous long-term trends in telemetry data
2. Anomalous time-domain evolution of telemetry values

Both types of anomalies pose their own unique challenges that
are addressed in different ways. In the first case, long term
trending of daily minima, maximum, and mean telemetry val-
ues in temperatures, currents, voltages, and radio frequency
(RF) power levels is used in addition to hard threshold safety
checks to look for changes in long-term equipment health and
performance. Long-term trending methods allow for ordinary
seasonal variations in these quantities caused by temperature
changes over the course of the Martian year while allowing
operators to determine whether current performance remains
in line with historical values from previous years. Changes in
long-term trends can provide important insights into the health
and status of the rover’s on-board systems as well as valuable
early warning if subtle degradation begins to take hold. But
while trending of daily statistics is valuable, it does not detect
anomalies in the short-term time evolution of data over the
course of minutes or hours during a day, and this task is handled
with short-term shape analysis. Principal components analysis
(PCA) has been found to provide robust detection of short-term
anomalies, and several examples of the use of PCA to detect
actual anomalous events will be provided here. In using PCA,
we use both the percentage of explained variance and also a
log likelihood test on the PCA expansion coefficients to flag
telemetry data for human review. Previous work in the field of
spacecraft anomaly detection includes [1] for MSL and [2] for
some other JPL missions.
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1. INTRODUCTION

The MSL Engineering Operations (EO) team is responsible
for analyzing data from spacecraft subsystems and assessing
both health and performance. Subsystem assessments are an
important input to the daily planning process in spacecraft
operations. If all subsystems are healthy and performing
properly, ordinary planning can proceed. Plans are changed
appropriately if health and performance issues are detected
with any of the subsystems.

The telecom subsystem handles all communications between
MSL and Earth and plays a vital role in mission success.
It enables commands to be sent to the spacecraft, scientific
data to be sent back to Earth, and important engineering
health and safety telemetry, including telemetry on itself, to
be sent back to Earth as well. Anomalies in this subsystem
can not only prevent downlink of scientific data but can also
endanger the mission itself since mission success depends on
both the ability to command the spacecraft and on the ability
to receive science and engineering data from the spacecraft.
Hence, timely and reliable detection of anomalous conditions
in Telecom plays an important role in mission success.

The two primary types of data used for this purpose are en-
gineering housekeeping and accountability (EH&A) data and
event record (EVR) data. Anomalous EVRs and anomalous
EH&A must be detected and reported in a timely fashion
in order to detect changes in health and performance and
in order to allow the mission operations team to respond
appropriately.

Examples of EVR data would include events such as an
Electra Lite Transceiver (ELT) being initialized in preparation
for a communications relay session with a UHF relay orbiter
or the start of a communications window or the receipt of
data from either a UHF relay orbiter or the Earth. Examples
of EH&A data would include temperature, voltage, current,
power consumption, received signal-to-noise ratio (SNR),
and output radio frequency (RF) power as a function of time.

On a given Martian day (Sol) Telecom must process ap-
proximately 3000 EVRs in addition to time domain data
from 150 EH&A channels. A manual review of this much
data is infeasible, and prior to the use of automation it was
necessary to limit the number of channels reviewed. Not
only did the daily review process require four to five hours
per day, but anomalies were often missed. Indeed, some
anomalies in the data were only discovered in retrospect
after automated anomaly detection was introduced! Hence,
automated anomaly detection results in greatly improved
reliability, since all anomalies previously detected by human
Telecom operators are consistently detected by the automated
tools as well. In addition, many anomalies previously missed
by human operators have been discovered by the automated
tools. Moreover, the daily assessment process takes less than
10 minutes with the aid of these tools.



2. MSL TELECOM SUBSYSTEM

A detailed description of the MSL Telecom Subsystem is
provided in [3]. This subsystem consists of the X-Band
subsystem for direct communication with Earth and the UHF
subsystem for communications with Mars relay orbiters, in-
cluding the Mars Reconnaissance Orbiter (MRO), Odyssey
(ODY), Maven (MVN), Mars Express (MEX), and the Trace
Gas Orbiter (TGO). Most commanding is done by X-band up-
link directly from Earth via the Deep Space Network (DSN),
but nearly all data downlinks are via UHF relay orbiters.

The X-Band subsystem at a high level contains:

o Small Deep Space Transponder (SDST): The X-Band com-
munications radio capable of full duplex communications
with the DSN on Earth.

« Solid State Power Amplifier (SSPA): The X-Band power
amplifier that amplifies the SDST’s output signal for trans-
mission to Earth.

o Waveguide Transfer Switch (WTS): Although two WTS
units are in the X-Band subsystem, in the surface phase of
the mission only one unit is used. This unit selects between
the two X-Band antennas described in the next two items.

o High Gain Antenna (HGA): This is a fully steerable an-
tenna used for higher communication rates at X-Band.

« Rover Low Gain Antenna (RLGA): This is a nearly om-
nidirectional antenna used for low rate X-Band communica-
tions, including “safe mode” emergency communications in
anomaly situations.

The UHF subsystem at a high level contains:

o Two ELT radios: These are two identical UHF communi-
cations radios. ELT-A is the prime radio, and ELT-B is the
backup.

o A UHF Coaxial Transfer Switch (CTS): This switch is used
to control which radio’s input and output will connect to the
UHF antenna

o Rover UHF Antenna (RUHF): This is the only UHF an-
tenna available in the surface phase of the mission.

Component health, especially the health of the UHF radios,
the SDST, and the SSPA, must be continuously monitored.
Additionally, subsystem performance must be continuously
trended in order to detect unexpected changes in performance
that may indicate a change in hardware health. Each Sol is
approximately 24 hours, 39 minutes, and 25 seconds long.
Each session in which the rover communicates either with
Earth via X-Band or with a UHF relay orbiter is called a
communications window. Health telemetry is trended either
on a per-Sol basis or on a per window basis.

It is important to note that some UHF relay windows, es-
pecially for MRO or ODY, tend to occur within a certain
band of local mean solar time (LMST) ranges. For example,
all MRO morning (in LMST) windows will occur within a
certain LMST time band each Sol, and all MRO afternoon (in
LMST) windows also occur within a certain LMST time band
each Sol due to the sun synchronous nature of the MRO orbit.
This statement is not true of MVN and TGO, however.

Most UHF data are trended on a per window basis because
the ELT-A (primary UHF) radio is only powered on and
collecting health and performance data during the course of
a window. Moreover, for MRO and for ODY, these data are
often separated for AM and PM passes, and this is especially
important for temperature and RF power telemetry.

On the other hand, most X-Band data tend to be trended on
a Sol-by-Sol basis since there is normally only one X-Band
window per Sol and since the X-Band radio is powered on and
listening whenever the rover is powered on, except in cases
where the rover is engaged in UHF communications, in which
case the rover is powered on but the X-Band radio is powered
off.

3. DETECTION OF ANOMALOUS EH&A DATA

EH&A data provides vital insight into the health and per-
formance of the MSL spacecraft. There are three types of
anomaly detection applicable to EH&A data:

1. Hard limits: For example, a given temperature may have
an acceptable range from -20 degrees Celsius to +50 degrees
Celsius. A violation of a hard limit is always detected and
reported by the automated system. Hard limit detection is
an established technique used for many decades in mission
operations.

2. Long-term trend limits: Even if a quantity, such as a tem-
perature, is well within the allowable hard limits, that quantity
may be out-of-trend. For example, the daily minimum, mean,
and maximum of a given temperature channel will often
exhibit seasonable trends. A maximum temperature of +35
degrees Celsius may be entirely normal during the Martian
summer but may signify a hardware health issue during the
Martian winter, leading to the need to detect data that are out-
of-trend.

3. Time domain data shape: Even if the minimum, maxi-
mum, and mean quantitics taken over a day or taken over
a communications session are well within both safety limits
and long-term trend bounds, anomalous evolution of the data
as a function of time may signify a health or performance
problem, necessitating detection of anomalous time domain
shapes.

While hard limits are straightforward, long-term trend bounds
and time domain data shape checks represent items that must
be learned from actual data over time. This paper focuses on
long-term trend bounds and time domain data shapes.

4. LONG-TERM TREND CHECKS

On either a daily basis or on a per-communications-window
basis, MSL telecom automatically gathers data on the mini-
mum, mean, and maximum values of telecom-related EH& A
channels. In Figures 1 and 2, we are trending a temperature
within the ELT-A UHF radio for morning UHF relay sessions
and for afternoon MRO UHF relay sessions, respectively. In
each Figure, we trend the per relay session minimum, mean,
and maximum temperature in degrees Celsius.

We trend the minimum (black), mean (green), and maximum
(blue) temperatures on a window by window basis. We
observe a large difference between the thermal behavior of
morning and afternoon UHF windows with afternoon win-
dows showing a very strong dependence on Martian season.
However, all temperatures lie well within hardware safety
limits. Colored dots are actual data points while broken lines
signify a four-sigma bound.

Although morning UHF sessions in Figure 1 exhibit very
steady behavior in minimum, mean, and maximum temper-
atures, there is a very clear seasonal variation in Figure 2.
Indeed, it is safe to say that a maximum temperature of +33
degrees Celsius would be well within normal behavior for
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Figure 1. UHF Radio Morning Temperatures (deg C).
Minimum (black), Mean (green), and Maximum (blue)
temperatures are plotted.
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Figure 2. UHF Radio Afternoon Temperatures (deg C).
Minimum (black), Mean (green), and Maximum (blue)
temperatures are plotted.

this radio during the Martian summer for an afternoon UHF
session. However, even in Figure 2 this would be clearly
anomalous during a Martian winter afternoon UHF session.
It would also be anomalous during the morning MRO UHF
relay sessions, regardless of season, as illustrated by Figure
1.

Similarly, a peak temperature of +17 degrees Celsius would
be entirely normal for a morning relay session with MRO
anytime during the Martian year as shown in Figure 1. But as
shown in Figure 2, this would clearly be a significant outlier
for the summer during an afternoon relay session. Indeed,
+17 degrees Celsius would be an anomalous minimum tem-
perature during an afternoon session in the Martian summer.

The radio temperature figures illustrate an important point
regarding anomaly detection: it depends heavily on historical
trends. A temperature that is entirely normal in one context
could be abnormal in another.
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Figure 3. Minimum value of RF Power Output in dBm
Long Term Trend

In the case of ELT-A radio temperatures, separate data series
have been defined for morning and afternoon passes due to
large differences in morning and afternoon thermal behaviors,
especially as a function of Martian season.

Once sufficient data have been gathered, the minimum, mean,
and maximum temperatures are trended as a function of
the Martian day (Sol). Each of the three data series has a
fifth-order trending polynomial fitted to it, and the standard
deviation of the error (actual data minus polynomial fit) is
computed. This error is not always Gaussian, so pursuing a
Gaussian-fit statistic test as a bound does not always yield
an accurate false alarm probability. In practice, however, a
Gaussian fit with a three-sigma or four-sigma bounds have
often worked well.

If a given data point lies within the defined three- or four-
sigma bound of the trend line, and if it also lies within
hardware safety limits, it is classified as “normal.” A point
that only lies out-of-trend but not outside of hardware safety
limits is flagged for review by a human operator with a notice
flag in the automated report. A point that violates a hard
safety limit, regardless of whether a trending bound has been
violated, is flagged as a red warning for human review in the
automated report.

An example of anomaly detection involving UHF radio RF
power output is shown in Figure 3. This is a plot of mini-
mum, mean, and maximum RF power output for each UHF
relay window over 1000 Sols. We observe a point in red
highlighting the anomaly on Sol 1795, in which the minimum
RF power output fell to slightly under 40 dBm. Although
this is within the acceptable safety limits for a running RF
amplifier for the Electra Lite radio, it is also out-of-trend,
which is why it was flagged. Please note that the system flags
out-of-trend points for the present day’s report. We see in the
same figure that another point slightly below 38 dBm is not
flagged because it was not part of the present day’s report, and
that point had been identified as a harmless outlier nearly two
years earlier. In general, the software searches for anomalies
occurring on reporting day and does not place old anomalies
in the report since reporting is handled on a daily basis.



5. EH&A TiIME DOMAIN CHECKS

Although the foregoing long-term trend checks are good at
catching abnormal minimum, maximum, or mean data, such
checks can easily miss anomalous time domain evolution of
data. If we plot an EH&A quantity as a function of time, then
an abnormal shape, even one with entirely normal minimum,
maximum, and mean value, must also be flagged for review.

There are many possible approaches to detected such shape
anomalies. In this paper, we describe a principal component
analysis (PCA) approach.

The key observation to the approach is that when the data
shape as a function of time is not “white noise,” we expect
that the autocovariance matrix of the time-domain signal will
be non-diagonal. This is due to neighboring time-domain
samples being relatively highly correlated over small time
differences.

For this reason, we first compute the autocovariance matrix of
the data to be tested. This is then followed by the extraction
of eigenvalues and eigenvectors of the autocovariance matrix
to yield an orthonormal basis over which each time-domain
vector can be expanded. The key insight, gained by analyzing
normal data, is that for a normal data shape, most (i.e. 95%
or more) of the “energy” of the vector expansion will be
contained in only the first few coefficients of expansion. This
implies that projecting onto these “dominant” eigenvectors
should preserve the energy of the test signal. Previously col-
lected and analyzed data are used to determine the number n
of expansion coefficients to use over the N-dimensional basis
(i.e., how many eigenvector filters to consider “dominant’).

The preprocessing steps are listed in Algorithm 1.

Algorithm 1 Anomaly Detection Preprocessing

Require: test sample £ € RV

1. Compute the mean pr = E[z] by averaging over adjacent
time samples.

2: Compute the autocovaraince matrix A = E[(x — p)(x —
1) 7] by averaging over adjacent time samples.

3: Obtain the N eigenvalues {e;} and corresponding eigen-
vectors. {'vz} and sort in order of descending eigenval-
ues. Since A is an autocovariance matrix, its eigenvalues
are real and non-negative, making this sorting operation
possible. Furthermore, the eigenvectors are orthogonal,
forming a useful N dimensional basis: the PCA basis.

4:  Select n such that an explained variance of at least 95%
is achieved over the input training set of vectors.

5. Compute the projection vector y = VTa, where V ¢

RN *" denotes the top n eigenvectors of the autocovari-
ance matrix A.

The number of principal components 7 is selected to achieve
at least 95% explained variance across the training set of input
vectors, and this number varies for each channel, with 3 to 10
principal components being typical for most channels.

Now, y denotes the vector of PCA expansion coefficients.
Even if the explained variance threshold is passed success-
fully, it is necessary to determine whether or not y itself is
out-of-family. In practice, for the channels used by the MSL
Telecom subsystem for health and performance analysis, it is
found that y does not form multiple widely spaced clusters
in the 3- to 10-dimensional vector space of expansion coeffi-
cients but usually forms a single cluster. So, in our approach:

Algorithm 2 Anomaly Detection Approach

1. We compute p1,, = E[y], the expected value.

2:  We compute A, the autocovariance matrix of y.
3:  Assuming a vector Gaussian probability density function,
the log-likelihood is (to within an additive constant):

L=—(y—p) A, (y—p,) ey

4:  Declare anomalous if

L<~y )
or
lyll3
<6 3)
[k

Observe that A, is a different, and much smaller, autocovari-
ance matrix than the one computed over the raw data vectors
prior to PCA basis projection in Alg. 1.

Log-likelihoods in (1) are computed over the training set
of coefficient vectors. Out of thousands of log-likelihoods,
far fewer than one-percent are anomalous, and a percentile
threshold under 1% is used to determine a log-likelihood
threshold. In addition, the theshold in (3) ensures that the
explained variance is sufficiently high (i.e., § = 90%).

An example of anomaly detection via data shapes is shown
in Figures 4 through 6, which plot successful frame UHF
transmissions over a link between MSL and MRO. In a
typical link, the frame counter begins at zero and climbs
upward during the relay pass as frames are transmitted. Once
the link finishes as the orbiter sets on the Martian horizon,
the frame counter stops incrementing and remains at its final
value until the radio is powered off. Since the link operates
at maximum efficiency when the orbiter is high in the sky,
the frame counter typically climbs steeply during this period.
The resulting ”’S-curve” is shown in Figure 4.

In anomalous cases due to software resets in the radio, one
of two behaviors may appear. Sometimes the frame counter
will immediately drop to zero as shown in Figure 5. In other
cases, the frame counter may actually climb to a very high
but completely false value before finally dropping to zero, as
shown in Figure 6. Both of the anomaly cases differ visually
from the typical case shown in Figure 4.

Applying algorithm 1 with three eigenvectors, the data shape
in Figure 4 can be described with an explained variance
exceeding 98%, which is typical for nearly all cases involving
this telemetry channel. However, for Figure 5, the explained
variance was 13%. It was only 2% for Figure 6.

In practice, the explained variance threshold method of equa-
tion (3) has been highly successful in detection of real-life
anomalies, as in the preceding example. False positives are
rare, but they can be dispositioned quickly by a human analyst
when they are flagged by the system. The authors find it
interesting that the log-likelihood in equation (1) has not, as
of this writing, caught any actual anomalies. Nevertheless,
the authors also believe that an anomaly detection system that
does not analyze y beyond simple explained variance would
be incomplete, and there remains a possibility that the log-
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Figure 5. UHF Relay Packet Counter

likelihood test will catch unforeseen anomalies in the future
although, again, all time-domain anomalies thus far were
discovered through explained variance using equation (3).

6. SUMMARY

Automated application of long-term trending analysis and
PCA-based anomaly detection enables rapid, reliable detec-
tion of anomalous data from the MSL Telecom subsystem,
significantly reducing the time for a human analyst to detect
an anomaly from hours to under 10 minutes. Moreover, since
human analysts were unable to process 150 channels within a
four- to five-hour period, the new system enables a far more
thorough review of the data than would be possible without
automatic anomaly detection.

There are multiple possible future directions, including, but
not limited to, the following:
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Figure 6. UHF Relay Packet Counter

« Related channels, including closely related temperature
channels, could be combined to generate combined channel
vectors x to be assessed using PCA. In this way, deviations
in typical channel-to-channel behavior can be detected more
reliably since the autocovariance matrix used to generate
the PCA expansion would now include channel-to-channel
covariances as well.

o Use of neural-network based autoencoder models [4] may
provide an even more powerful method of checking for time-
domain anomalies than the present system does. This could
be applied to raw data vectors x or to PCA coefficient vectors

v.
« Dictionary learning is another approach that has yet to be
tried on this problem [5].

o For time-domain data anomalies, some exploratory work
using the LSTM neural network approach of Hundman et al.
[2] is in progress.

While the work presented here has already produced large
improvements in anomaly detection reliability along with
substantial workload reductions on human personnel, it is
very much a starting point, and new approaches will be
explored and introduced over time.
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