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Mars Formulation
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Notional Earth Return Profile NA e vty
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1. Orbiter deflection maneuver from Earth-bypass trajectory to
nominal Earth-entry trajectory 1-10 days before EEV entry

2. EEV MM garage opened
3. EEV is spin-ejected to correct entry attitude Descent
4. EEV passes through orbital debris field
5. EEV enters atmosphere (high heat and deceleration) e TEa
6. EEV eescends through atmosphere slowing to a terminal NOtlona| La%dfmg Site
velocity of 35-45 m/s %
7. EEV impact lands in soft soil at UTTR (notional landing site) Landing/Impact j[—
&

Outside Landing Zone Landing Zone
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Notional Earth Return Profile — Risks (L5 st
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EEV Design Considerations for
Off-Nominal Landing

Jet Propulsion Laboratory
e/ California Institute of Technology

Mars Formulation

Ability to survive an off-nominal impact and limit C-OS loads to manageable
levels is critical to achieving a highly reliable, low-risk sample return system

* In off-nominal events, not required to maintain scientific integrity of returned samples

— Primary goal: Preserve containment P Contained Orbiting
y "% Sample (C-0OS) Concept
y V
« Estimate C-OS can be designed to \
W|thstaqd 3000 G - = 7 7
— Design, analysis, and testing is being W v e |
conducted in FY19 to verify \ /
« Cellular energy absorber (CEA) mitigates  EEV concept
C-OS loads during off-nominal impact Hard Surlface impact L

— Formed by wrapping carbon foam cells with
composite, then assembling and co-curing

— Estimate fully crushed height is 25%
of initial; apply safety factor to avoid full crushing

Performance Metrics | Allowable E

1. C-OS Loading 3000 G 1.0
2. CEA Crushed height 25% 1.3

CEA Composite Webs
(Foam hidden)

TN ' B 1 [
min‘height: — hfully cru/sﬁd;Escmsh,
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Current EEV Designs and Landing
Characteristics

« Two TPS materials under consideration
1. PICA (low density carbon phenolic)

» Pressure-heating capability for EEV
environment only sparsely demonstrated

» For impact landing. PICA considered
non-structural mass

2. HEEET (3D woven carbon phenolic)
« Higher MM/OD resistance than PICA

« Demonstrated capability well within
EEV pressure-heating environment

» Heavier EEV with ~2x kinetic energy HEEET EEV
as PICA EEV at impact Reference Concept

« Stiffer/more structural than PICA; may not be
able to ignore during off-nominal impact

 Both reference designs utilize the same
cellular enerqy absorber concept

* Landing characteristics for each EEV concept
based on ED&L analysis by NASA LaRC
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HEEET Dual
Layer Weave

Jet Propulsion Laboratory
California Institute of Technology

PICA EEV
Reference Concept

Both designs use
PICA backshell TPS

PICA Concept Landing Characteristics
Parameter Unit | 0.13% | Mean | 99.87%

Vertical Velocity | m/s | 32.4 34.8 37.5
Impact Angle deg 0.5 71 15.7

HEEET-DL Concept Landing Characteristics

Parameter Unit | 0.13% | Mean | 99.87%
Vertical Velocity | m/s 37.6 | 40.5 43.
Impact Angle deg 0.3 71 17.3

Reference Masses and Energy at Impact (99.87% velocity)
Design Mass (kg) | Energy (kJ)
PICA 63.3 44.5
HEEET-SL 80.3 75.6
HEEET-DL 85.0 80.1 7
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Off-Nominal Impact Analysis Using LS-DYNA

Mars Formulation

« All parts of the EEV are explicitly modeled
— Foams modeled with solid elements

— Composite webs, forward body shell, and most other
parts modeled with shells

— C-0OS is simplified to SCV shell with an assigned mass
(currently 23 kg)
* Highly non-linear analysis involving:
— Large deformation
— Material nonlinearity & Composite failure
— Complex contact
* Must conduct early testing to validate models

— Early in design process, test coupons and
representative elements of critical components

 For off-nominal impact, the energy absorber is N
the most critical component \ Ff?f CEA Composite Webs

— First steps of traditional “building block approach” (Foam hidden)
— Once validated, models are a critical design tool

Time= 0 Hard Surface Impact example

Hard Surface impact

Sharp Edge impact

Rigid (infinitely stiff), flat surface

Rigid, filleted edge, 1 cm,
45 slope, 6 cm tall
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CEA Modeling for Impact
Building Block Approach

NG
Mars Formulation

Jet Propulsion Laboratory
California Institute of Technology

» Traditional method of developing

validated models of complex
system and phenomena

— Concurrent physical testing and
analysis

» Starting point is coupon and
representative elements

« Candidate CEA web materials:
— IM7 5HS fabric
— Kevlar-129 plain fabric
— TC420 cyanate ester resin matrix

Physical Testing

Full Vehicle

Components

Elements

Coupons
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IM7/RT-Epoxy

Initial Model Inputs Derived from Test Data

Static Tensile Coupons

Mars Formulation

Jet Propulsion Laboratory
California Institute of Technology

IM7/RT-Epoxy

_Static Cylinder Compression

Dynamic Cylinder Crush

0° coupons +45° coupons
1000 E,. = 74.5GPa :0 Gas = 3.65 GPa
800 > %50 e
© ’}(t »40
S600 =745GPal | §
100 5
8 £20
200 2
0 €116 = 1% 0 Z1m
g O'SStralln, %1'5 & 0 Eng.ls et}rsstrzgn,%/g =
180 Ea.=50.2 GPa
160 '
140
©120
=100 —— (0/90)6
g 8 (+/-45)6
A 60
40
20
O -
0 01 Q2.03 04 05

= (0/90)Gr3 - Test 1
= (0/90)Gr6 - Test 2

(+/-45)Gr3 - Test 3
(+/-45)Gr6 - Test 4

DA Xcavg

Stress, MPa
0
S

- [

0 20

~ 80 MPa

|
40 60 80
Strain, %

100

5HS 6k Fabric
Physical Data or Model Model (v1.0)
Speed basis Hybrid
Temperature basis RT
Ply thickness mm 0.33
Physical prop /
*MAT_58 Param Description
RHO Density, kg/m? 1496
EA/EB, tension Young’s modulus, GPa 74.5
EA/EB, compression Young’s modulus, GPa 50.2
EC? Young’'s modulus, GPa 50.2
PRAB Poisson’s ratio 0.05
PRBC/PRAC Poisson’s ratio 0.05
GAB Shear modulus, GPa 3.65
GBC/GAC Shear modulus, GPa 3.65
SLIMT1/SLIMT2 (vat sy [Min. stress limit — tension 0.1
SLIMC1/SLIMC2 watss)  |Min. stress limit — compression 1.0
SLIMS (vat_se) Min. stress limit — shear 0.85
ERODS (mat_ss) Max. eff. strain for layer failure -
E11C/E22C Max. compressive strain 0.00165
E11T/E22T Max. tensile strain 0.01
TAU1 Shear stress at non-linear, MPa 31.7
GAMMAL1 Shear strain at non-linear 0.035
GMS Max. shear strain 0.17
XC/YC Max. compressive stress, MPa 80.0
XT/YT Max. tensile stress, MPa 744.6
SC Max. shear stress, MPa 46.9
SOFT Softening reduction factor -
FS Failure surface -1 (uncoupled)
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IM7/RT-Epoxy
Static Tests vs. Analyses

Jet Propulsion Laboratory
California Institute of Technology

Mars Formulation

Static Tensile Coupons Static Cylinder Compression
1000 — 180
900 ‘ ———(0/90)Gr6 - Test 2
——(0/90)Gr6 - Analysis v1.0 model z=z  (0/90)g
800 160 (+/-45)Gr6 - Test 4
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IM7/RT-Epoxy

Cylinder Crush Tests vs. Analyses

* Goal: Match energy absorbed,
load history, and deformed

shape during crushing

— Load history and deformation
behavior do not need to match
exactly; general agreement is
sufficient

« Example: (£45), analysis
— Corresponds to Test 4

35000

30000

25000

Z 20000

S 15000

10000

5000

Initial wrinkle in Test 4 may have
altered folding behavior, so Test 3
video is also shown for comparison

—  Expect that without initial wrinkle,
Test 3 and 4 folding would have

been more similar

Result: Energy absorbed, loads,
and deformation match well

— Very few mods needed; biggest
change was trigger to encourage
failure on same side at the test

— Gives credence/validity to the
material model used (LS-DYNA
Mat58 w/ shells)
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Mars Formulation

(+/-45)Gr6 - Test 4 All results have 1 kHz
== == == (+/-45)Gr6 - Analysis - Iterd LP filter applied
\ A
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High speed videos
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Jet Propulsion Laboratory

Dynamic Crush Test Articles

Foam-Filled Cxlinders and Elements
Mars Formulation

Crush tests are completed; Data post-processing and modeling underway

Specimen Weight,g  Diameter, in Height, in

+ Elements: Shrink Wrap 138 4.090 2.954
+ Elements: Vacuum 142 4.084 3.038

Specimen Layup Weight, g Diameter, in Height, in
Cylinder #1 (0/90), gr 48 3.079 3.045
Cylinder #2 (+45),8r 50 3.069 3.094
Cylinder #3 (0/90) k 47 3.113 3.026
Cylinder #4 (0/90)6 k 67 3.153 3.129
Cylinder #5 (+45)5k a4 3.066 2.968
Cylinder #6 (0/90), gr / (45),k 57 3.068 3.033
Specimen Weight, g Diameter, in Height, in
Y Elements: Shrink Wrap 131.2 4.035 2.984
Y Elements: Vacuum 127.7 4.071 3.0175
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CEA Web Pattern and Layup Iterations
Hard Surface Impact

Jet Propulsion Laboratory
California Institute of Technology

Mars Formulation

V2.1: DAC2 starting desian V2.3: Increased thickness of V2.4: Added more webs
L 9 9 central webs ~66% (t3,t7,t6) (t2) to outer hoop S
o
%
©
=
L
1%}
//’/ :
‘ ( ‘ Y/ V2.1 v2.2 v23 V2.4
> \ . | .: PICA PICA PICA PICA
: ‘ / 4000
v ‘ \ & 0 3000 =gmmmm = mmm
i ; |\ °
, § 2000 oo
' e
4 DAC2 ICoSS V2.1 EEV Hard Surf Impact 4 DAC2 ICOSS V2.3 EEV Hard Surf Impact c_os Ioads M DAC2 ICOSS V2.4 EEV Hard Surf Impact (@] 0
A/ exceed req V2.1 V2.2 V2.3 V2.4
S T ) A A S ., M [ P R P A PICA PICA PICA PICA
g [<3000G £ <3000 G 7 \ § (<3000 G
) Crush margin f 2 f ) A ’ /\/'.J\\ = 0.4
g exceeded; loads £ UL /w \ % ’V\M\/ \ =03 029
§1 | irrelevant and SN v\v N E 0-23
g j\\J "WA\/ unreliable after ~2 ms 3 \J S U \\\v\w/ o 02 0.13
2
° : 3 1 ’ : : ’ : ; : 3
Time (5) €03) Time (s) (E-03) Time (s) (E-03) g 0 0.00
< V2.1 V2.2 V2.3 V2.4
metric strain PICA PICA PICA PICA

1020288
1020288

« Latest CEA iterations
look promising for
meeting hard surface
impact requirements
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HEEET TPS
Some Considerations for Stiff/Structural TPS

Jet Propulsion Laboratory
California Institute of Technology

Mars Formulation

1. Stiff TPS could prevent CEA crushing

— Instead, loads could pass through outer webs and fail the
C-0OS mounts, which would be unacceptable

2. Thick structural TPS could interact with the CEA in an ”}\_m_ )
unforeseen negative way

— Example: TPS could bunch/mushroom around nose,
leading to premature C-OS loading

3. On the other hand, HEEET layer(s) could absorb HEEET TPS

significant energy, assisting with off-nominal impact .
Undesw path

Desired path
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Jet Propulsion Laboratory

HEEET TPS - Effect On CEA Crushing Propus

Boundin= Analxses
Mars Formulation

Foam hidden from C-OS Acceleration
view in all images 15000
—PICA
! 0000 ——HEEET
-5 5000 ——Rigid
©
3 0
(non-structural mass) 8 0 0.002 0.003 0.004
<
-5000
-10000 .
Same failure mode; Time (s)
Webs crushing

beneath C-OS
. Bounding analyses (old EEV design)

1. PICA EEV model
+ Baseline / lower bound model
2. Conservative HEEET IL model
» Tensile failure, no compressive failure

* More elastic (i.e. stiffer) than actual material
which would have compressive damage

3. Rigid aeroshell
* Upper bound model

HEEET S/IL
Conservative model

. Conclusion: HEEET will not prevent energy
absorber from crushing as desired

Different failure mode: — Addresses consideration/concern #1

Rigid aeroshell

tg;gf xg‘é‘;“d}:‘;gtﬁ‘f?o — To address considerations #2 and #3, need to
COS-to-EEV connection model HEEET and analyze EEV impact
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HEEET IL

Initial Model Inputs Derived from Test Data

Mars Formulation

@ Jet Propulsion Laboratory
e/ California Institute of Technology

Modeling approach

Static Tensile Coupons

EA (Warp)
EB (Fill)

Stress

GAB (Shear)

/

Strain

Pre-Decisional:

For Planning and Discussion Purposes Only

Yield

Stress

A J

Stress Profile

Time
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Jet Propulsion Laboratory

HEEET IL Model Development
Tensile Cou= on Testin=

Warp Clrection HEEET RL Fill Tensile Coupon Analysis Jrect

failure

HEEET RL Warp Tensile Coupon Analysis

vli3
— — @lestavg. (approx.)

vli3
— — @flestavg. (approx.)

Stress

Stress

mAAhAhﬂf

Strain Strain
HEEET RL Bias Tensile Coupon Analysis
vi3 - . i
In-plane shear failure e

5.500e-01

— — @flestavg. (approx.)

Stress

Strain
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Jet Propulsion Laboratory

HEEET RL Model Development
Tensile Cou= on Testin=

. . Warp directi . . .
HEEET RL Warp Tensile Coupon Analysis ar?a"::,-eecnon HEEET RL Fill Tensile Coupon Analysis failu

vli3 vi3
— — festavg. (approx) \ — — festavg (approx.
) )
Strain Strain
HEEET RL Bias Tensile Coupon Analysis
v13 »

= = #flestavg. (approx.) = T "i-mz;;;::;:i
. Warp direction failure ]

17 Post
| Keyword Entity
5 Boundary

i Database

2 Define
43 Set

—

Stress

Strain
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HEEET IL Model Development
Wide Span Dynamic 3pt Bend Testing

Jet Propulsion Laboratory
California Institute of Technology

Mars Formulation
Goal: Match energy absorbed, load history, and
deflection profile

Results: Peak loads and deflections are on the right

order, but energy absorbed may be over- or under-
predicted depending on support span

HEEET Static3ptBend Testing
12.7 mm/s (0.5 in/s)

~@—TESTIL0/90 (44070ABag 1 IL-1) - 6" span
Analysis - HEEET IL —Model 1
Analysis - HEEET IL —Model 2

Load

Cross-head displacement

Pre-Decisional: For Planning and Discussion Purposes Only
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HEEET IL Model Development ot bronuision Laboratory

Short S= an Dynamic 3pt Bend Testing
ars Formulation

- — | | »y

Surface component 1
EpsKY

HEEET Static 3pt Bend Testing
12.7 mm/s (0_5 in/s) —#— 1L 0/90 (44070A-Bag2-IL2-Sidel) - 4" span

—#—1IL 0/90 (44070A-Bag2-IL2-side2) - 4" span
Analysis — HEEET IL —Model 1
Analysis — HEEET IL —Model 2

Load

Crosshead displacement
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C-0S Acceleration (G's) (E+3)

CEA Web Pattern and Layup Iterations

HEEET S/IL EEV

DAC2 ICoSS V2.4 HEEET EEV Hard Surf Impact

PICA EEV

4 DAC2 IC0oSS V2.4 EEV Hard Surf Impact 4

w

©w

<3000 G T |<3000G
2 A P § 21 Early termination
o
I V ‘ﬂf\/ \ s | \/\/\/ due to model
8 instabilities
1 n § 11+ ~
N |
0 . . L\\A"\'\—\M 0 : |
0 1 2 3 4 0 1 2 3 4 5
Time (s) (E-03)

Time (s) (E-03)

metric strain
1020288
1020288

’.
“ \ ;“ /
| { 1\
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Jet Propulsion Laboratory
California Institute of Technology

Hard Surface Im:act — PICA vs. HEEET |

V2.4: Added more webs
(t2) to outer hoop

+ Initial hard surface impact results
for HEEET TPS are encouraging

Results before premature model
termination suggested
equivalent or lower C-OS loads
with HEEET vs. PICA

No apparent bunching, inward
ingression, or other negative
interaction with CEA

Material model is still too
immature to be conclusive,
though; further development
and/or testing is needed

22



@ Jet Propulsion Laboratory
e/ California Institute of Technology

Conclusions and Future Work

« Testing and corresponding analyses for developing validated EEV off-nominal
impact models via a building block approach are progressing

« Analyses of latest CEA design iterations with models developed thus far are
encouraging for meeting C-OS loading and CEA crush margin performance metrics

« HEEET will not prevent proper crushing behavior of the CEA

 Initial hard surface impact results for HEEET TPS suggest similar or possibly lower
loads compared to PICA

— Further development and possibly testing is needed to confirm HEEET behavior

* Future/on-going work
— Continue CEA element testing and model validations

— Ultilize Quantification of Margins and Uncertainties (QMU) approach, particularly
to quantify modeling uncertainties
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BACKUP

Mars Formulation

For planning and discussion purposes only.



Jet Propulsion Laboratory
e/ California Institute of Technology

Energy Absorber Design Architecture

Mars Formulation

Two major classes of blunt impact energy absorber architectures considered:

“Shock Absorber” Architecture “Crumple Zone” Architecture
A
Payload Payload . ‘
Payload Payload

* Energy is dissipated by internal energy absorber Energy is dissipated by deformation and failure of

(crushables, plastic deformation, etc.) the structure itself
* Need large stroke energy absorber that doesn’t Material ahead of payload absorbs impact energy

de-couple the payload from the structure Structure adjacent/behind the payload remains
» Exterior structure deforms very little intact and maintains coupling with the vehicle
* Therefore, external structure must be very Lower mass option; approach chosen for the

stiff and strong — Heavy design EEV CAM

Tension cords

Hard Shell

Hex Cell Composite Web
(MSR-2003) + Foam

25
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Off-Nominal Impact Performance Metrics

Jet Propulsion Laboratory
e/ California Institute of Technology

Mars Formulation

 Current metrics in use:
— C-0S Loading

* In-direct measure of containment failure
* Loads defined at the CAM/C-0OS interface

» Estimate C-OS can be designed to
withstand 3000 G

— Design, analysis, and testing is being
conducted in FY19 to verify
— CEA Crushed Height

» Fully crushed material is stiff and
hard to characterize
— Loads increase drastically
— FE models are also likely unreliable
» Estimate 75% stroke efficiency

» Therefore, fully crushed height is 25%
of initial; apply safety factor

| Metric__| Allowable | FS.|

1. C-OS Loading 3000 G 1.0
2. CEA Crushed height 25% 1.3

C-0S
Acceleration

\

CEA Crush
Height

hmin height

hfully crushed * FScrush

26



Jet Propulsion Laboratory
e/ California Institute of Technology

Off-Nominal Impact Performance Metrics

Mars Formulation

* Eventual goal: Develop metrics and models
for predicting SCV and PCYV failure

— Direct measures of whether containment has been SCV Seal

maintained or not e ————
— Longer-term effort requiring dynamic/impact testing R SC),

of container articles and corresponding model T

development to establish reliable metrics and il ____:

analytical approaches

» (Also tasks | am working) CEA Crush
Height
PCYV Joint Load
Total line Component stress
load or line load

Iy
|

27
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California Institute of Technology

CEA Crushed Height Metric

Mars Formulation

250 ]

1

* Avoid crushing CEA beyond its stroke efficiency i
— Fully crushed material is stiff and hard to characterize =~ 2% I

* Loads increase drastically after this point i

« Models also become unreliable after this point 2150 E

1

1| Fully crushed * FS
1 >
Fully crushed

— Estimate 75% stroke efficiency for CEA structure
— Therefore, fully crushed height is 25% of initial
— Use 1.3 factor of safety to provide buffer

§’cress
o

o
—

—B1-C19394
0 ——B2-C1 graphite
0 0.2 0.4 0.6 0.8 1
Strain in/in

hmin height

MS crysn =
hfully crushed * F Scrush

hinitial

28
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CEA Modeling for Impact
Building Block Approach

Jet Propulsion Laboratory
e/ California Institute of Technology

Mars Formulation

Coupons Elements Components Full Vehicle

Static testing
Dynamic testing

. » Web+foam crush
+ Carbon foam crush testing » CAM component
(details TBD)
—
» Web-only crush(m be |
* Graphite/Kevlar coupontesting
- Web (& ATS‘7) shell layups

» HEEET plate bending

« HEEET coupontesting !
———
Z e &

! !

hmin height

MScrusn = -1

hfully crushed * FScrush

For planning and discussion purposes only. 29



Jet Propulsion Laboratory
e/ California Institute of Technology

DAC2 Off-Nominal Landing Cases

Potential Off-Nominal Impact Cases
Case 1: Soft Surface (e

Case 2: Hard Surface Y
» High surface normal velocity | « High surface normal velocity

* Dry hard soil, all layers * Rigid, flat surface
* High AoA on sloped ground \’ AoA relative to surface y
¢ N

Case 3: Sharp Edge Case 4: Inverted

» High surface normal velocity | « Low normal velocity

* Rigid filleted edge: * Rotational velocity relative
\ 1cm/45°, 6¢cm tall Y, to CG

Hard Surface impact

Sharp Edge impact

Rigid (infinitely stiff), flat surface

Rigid, filleted edge, 1 cm,
45° slope, 6 cm tall

Surfaces were chosen to be conservative
and challenge the EEV design.

30
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CEA Material Model Development

LS-DYNA Mat58

Jet Propulsion Laboratory
California Institute of Technology

Mars Formulation

«  Orthotropic model with direction-dependent failure; Suitable for both carbon and Kevlar composites
« Arbitrary stress-strain response can be defined for E,, Eg, G,g, both in the tension and compression

« Post-damage response can capture complete loss of load carrying capability (appropriate for tensile failure)
or sustained a load/stress carrying capability after failure (appropriate for compression and shear failure)

(0/90) fabric layup compression
cylinder coupons

(*45) fabric layup compression
cylinder coupons

Mat58 Custom E,/Eg S-S Response

Carbon fiber
Kevlar fiber

=

Mat58 Custom G,5 S-S Response

Carbon fiber
Kevlar fiber

For planning and discussion purposes only.

(0/90) fabric layup tensile coupons
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