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• MSR Earth Entry Vehicle (EEV) Impact Landing Overview
• EEV Cellular Energy Absorber (CEA) Design
• Current EEV Designs

– PICA TPS
– HEEET S/IL & T/DL TPS

• EEV Off-Nominal Impact Analysis Using LS-DYNA
• CEA Coupon and Element Testing and Model Validations
• CEA Design iterations
• HEEET TPS and CEA Performance
• HEEET Testing and Model Development
• PICA vs. HEEET Hard Surface Impact
• Conclusions & Future Work
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Earth

Mars

Sample Return and ScienceSample Retrieval Lander (SRL)

Tube Retrieval Launch Mars Ascent 
Vehicle (MAV)

SRL
Concept

Orbiting 
Sample (OS)

Mars 2020

Mars 2020
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Retrieve OS and
“Break-the-Chain”

Earth Return Orbiter (ERO)

Earth Entry Vehicle 
(EEV) Reentry

ERO Divert

ERO
Concept

Can Launch 
in either order

*Per NASA/ESA Joint Statement of Intent, 26 April 2018 

Land Fetch 
Rover and 
MAV

Launch 
ERO

Launch 
SRL

Launch 
Mars 2020

Focus of 
This Work
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§ Landing planned for the Utah Test 
and Training Range (UTTR).
ØEEV will rely on soft clay to decelerate 

vehicle (w/o crushing) such that the 
payload sees <1500 g

ØWorked with NASA Langley GIS team to 
produce a dataset that includes roads, 
railroads, bodies of water, and airports 
around the UTTR landing site.
• obtained ETOPO1 Global Relief Model data     

(@ 1 arc-minute, ~2 km resolution) for hazard 
identification

§ Baseline landing footprint (99%-tile) 
on the order of 50 x 10 km.
Ø footprint strongly influenced by assumed 

navigation data available (which drives 
the dispersions at entry interface)

Ø footprint estimates for a parachute system 
are on the order of 30-50% larger than 
passive system

Ø preliminary assessment indicates <<0.1% 
likelihood of landing on hazardous terrain

EEV Landing Footprint and Hazards

Atmospheric Entry

Descent

1. Orbiter deflection maneuver from Earth-bypass trajectory to 
nominal Earth-entry trajectory 1-10 days before EEV entry

2. EEV MM garage opened
3. EEV is spin-ejected to correct entry attitude
4. EEV passes through orbital debris field
5. EEV enters atmosphere (high heat and deceleration)
6. EEV descends through atmosphere slowing to a terminal 

velocity of 35-45 m/s
7. EEV impact lands in soft soil at UTTR (notional landing site)

EEV 
Release

1 2
3

4

5

6

7

ERO Deflection Maneuver 
to Earth Flyby 

ERO Deflection Maneuver 
to Earth Entry Trajectory

Micro-Meteoroid / 
Orbital Debris Field

Outside Landing Zone Landing Zone 

Landing/Impact

Notional Landing Site

Notional Earth Return Profile
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Release & Space Flight
• Off-nominal release
• MM/OD damage

Atmospheric Entry
• Off-nominal entry
• Structural failures
• Heatshield failuresPre-Release

• Dust contamination
• Improperly 

sealed/sterilized
• Improperly assembled 

backshell

Outside Landing Zone 

§ Landing planned for the Utah Test 
and Training Range (UTTR).
ØEEV will rely on soft clay to decelerate 

vehicle (w/o crushing) such that the 
payload sees <1500 g

ØWorked with NASA Langley GIS team to 
produce a dataset that includes roads, 
railroads, bodies of water, and airports 
around the UTTR landing site.
• obtained ETOPO1 Global Relief Model data     

(@ 1 arc-minute, ~2 km resolution) for hazard 
identification

§ Baseline landing footprint (99%-tile) 
on the order of 50 x 10 km.
Ø footprint strongly influenced by assumed 

navigation data available (which drives 
the dispersions at entry interface)

Ø footprint estimates for a parachute system 
are on the order of 30-50% larger than 
passive system

Ø preliminary assessment indicates <<0.1% 
likelihood of landing on hazardous terrain

EEV Landing Footprint and Hazards

Landing Zone 

Impact Landing
• Hard surface
• Sharp edge
• Unacceptable 

attitude/inverted

Descent
• Tumble
• Out-of-range 

trajectory
• Excessive terminal 

velocityEEV containment risks are 
categorized into 6 regimes
1. Pre-Release
2. Release & Space Flight
3. Atmospheric Entry
4. Descent
5. Impact Landing
6. Post-landing

* Examples of potential off-nominal situations shown in in red

Notional Landing Site

Notional Earth Return Profile – Risks

Focus of 
Current Studies
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• In off-nominal events, not required to maintain scientific integrity of returned samples
– Primary goal: Preserve containment

• Estimate C-OS can be designed to
withstand 3000 G

– Design, analysis, and testing is being
conducted in FY19 to verify

EEV Design Considerations for 
Off-Nominal Landing

Contained Orbiting 
Sample (C-OS) Concept

6

CEA Composite Webs
(Foam hidden)

• Cellular energy absorber (CEA) mitigates
C-OS loads during off-nominal impact

– Formed by wrapping carbon foam cells with 
composite, then assembling and co-curing

– Estimate fully crushed height is 25%
of initial; apply safety factor to avoid full crushing

Ability to survive an off-nominal impact and limit C-OS loads to manageable 
levels is critical to achieving a highly reliable, low-risk sample return system

Performance Metrics Allowable F.S.
1. C-OS Loading 3000 G 1.0
2. CEA Crushed height 25% 1.3

Hard Surface Impact

Pre-Decisional:  For Planning and Discussion Purposes Only
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Current EEV Designs and Landing 
Characteristics

• Two TPS materials under consideration
1. PICA (low density carbon phenolic)

• Pressure-heating capability for EEV
environment only sparsely demonstrated

• For impact landing, PICA considered
non-structural mass

2. HEEET (3D woven carbon phenolic)
• Higher MM/OD resistance than PICA
• Demonstrated capability well within

EEV pressure-heating environment
• Heavier EEV with ~2x kinetic energy

as PICA EEV at impact
• Stiffer/more structural than PICA; may not be 

able to ignore during off-nominal impact

• Both reference designs utilize the same 
cellular energy absorber concept

• Landing characteristics for each EEV concept 
based on ED&L analysis by NASA LaRC

7

PICA EEV
Reference Concept

HEEET EEV 
Reference Concept

Both designs use 
PICA backshell TPS

HEEET Dual 
Layer Weave
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• All parts of the EEV are explicitly modeled
– Foams modeled with solid elements
– Composite webs, forward body shell, and most other 

parts modeled with shells
– C-OS is simplified to SCV shell with an assigned mass 

(currently 23 kg)
• Highly non-linear analysis involving:

– Large deformation
– Material nonlinearity & Composite failure
– Complex contact

• Must conduct early testing to validate models
– Early in design process, test coupons and 

representative elements of critical components
• For off-nominal impact, the energy absorber is 

the most critical component
– First steps of traditional “building block approach”
– Once validated, models are a critical design tool

8

CEA Composite Webs
(Foam hidden)

CEA beneath C-OS

Hard Surface Impact example
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CEA Modeling for Impact
Building Block Approach

• Traditional method of developing 
validated models of complex 
system and phenomena

– Concurrent physical testing and 
analysis

• Starting point is coupon and
representative elements

• Candidate CEA web materials:
– IM7 5HS fabric
– Kevlar-129 plain fabric
– TC420 cyanate ester resin matrix

9

Coupons

Elements

Components

Full Vehicle

Physical Testing Analysis

3"

3"

3"

3"
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IM7/RT-Epoxy
Initial Model Inputs Derived from Test Data
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IM7/RT-Epoxy
5HS 6k Fabric

Physical Data or Model Model (v1.0)
Speed basis Hybrid
Temperature basis RT
Ply thickness mm 0.33
Physical prop /
*MAT_58 Param Description
RHO Density, kg/m3 1496
EA/EB, tension Young’s modulus, GPa 74.5
EA/EB, compression Young’s modulus, GPa 50.2
ECa Young’s modulus, GPa 50.2
PRAB Poisson’s ratio 0.05
PRBC/PRAC Poisson’s ratio 0.05
GAB Shear modulus, GPa 3.65
GBC/GAC Shear modulus, GPa 3.65
SLIMT1/SLIMT2 (Mat_58) Min. stress limit – tension 0.1
SLIMC1/SLIMC2 (Mat_58) Min. stress limit – compression 1.0
SLIMS (Mat_58) Min. stress limit – shear 0.85
ERODS (Mat_58) Max. eff. strain for layer failure -
E11C/E22C Max. compressive strain 0.00165
E11T/E22T Max. tensile strain 0.01
TAU1 Shear stress at non-linear, MPa 31.7
GAMMA1 Shear strain at non-linear 0.035
GMS Max. shear strain 0.17
XC/YC Max. compressive stress, MPa 80.0
XT/YT Max. tensile stress, MPa 744.6
SC Max. shear stress, MPa 46.9
SOFT Softening reduction factor -
FS Failure surface -1 (uncoupled)

Try to get tensile 

coupon test pics

Replace with SI unit 

graphs and data

Static Tensile Coupons

Dynamic Cylinder Crush

Static Cylinder Compression

0° coupons ±45° coupons

𝑬𝑨,𝒕 = 𝟕𝟒. 𝟓 𝐆𝐏𝐚

𝑿𝒕
= 𝟕𝟒𝟓 𝐆𝐏𝐚

𝜺𝟏𝟏,𝒕 = 𝟏%

𝑮𝑨𝑩 = 𝟑. 𝟔𝟓 𝐆𝐏𝐚

𝜸𝑺
= 𝟏𝟕%

𝜸𝟏
= 𝟑. 𝟓%

𝑺𝑪 = 𝟒𝟔. 𝟗 𝐌𝐏𝐚

𝝉𝟏
= 𝟑𝟏. 𝟕 𝐌𝐏𝐚

𝑺𝑳𝑰𝑴𝑺 = 𝟎. 𝟖𝟓

𝑬𝑨,𝒄 = 𝟓𝟎. 𝟐 𝐆𝐏𝐚

𝑿𝒄,𝒂𝒗𝒈
≈ 𝟖𝟎𝐌𝐏𝐚
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IM7/RT-Epoxy
Static Tests vs. Analyses
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Static Tensile Coupons Static Cylinder Compression
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IM7/RT-Epoxy
Cylinder Crush Tests vs. Analyses

• Goal: Match energy absorbed, 
load history, and deformed 
shape during crushing

– Load history and deformation 
behavior do not need to match 
exactly; general agreement is 
sufficient

• Example: (±45)6 analysis
– Corresponds to Test 4

• Initial wrinkle in Test 4 may have 
altered folding behavior, so Test 3 
video is also shown for comparison

– Expect that without initial wrinkle, 
Test 3 and 4 folding would have 
been more similar

• Result: Energy absorbed, loads, 
and deformation match well

– Very few mods needed; biggest 
change was trigger to encourage 
failure on same side at the test

– Gives credence/validity to the 
material model used (LS-DYNA 
Mat58 w/ shells)

12

(±45)6 Analysis

(±45)6 − Test 4(±45)3 − Test 3
High speed videos
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Dynamic Crush Test Articles
Foam-Filled Cylinders and Elements
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Crush tests are completed; Data post-processing and modeling underway
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CEA Web Pattern and Layup Iterations
Hard Surface Impact

V2.3: Increased thickness of 
central webs ~66% (t3,t7,t6)

V2.4: Added more webs
(t2) to outer hoopV2.1: DAC2 starting design

Crush margin
exceeded; loads 

irrelevant and 
unreliable after ~2 ms

<3000 G <3000 G <3000 G

14

• Latest CEA iterations 
look promising for 
meeting hard surface 
impact requirements

C-OS loads 
exceed req
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HEEET TPS
Some Considerations for Stiff/Structural TPS

1. Stiff TPS could prevent CEA crushing
– Instead, loads could pass through outer webs and fail the 

C-OS mounts, which would be unacceptable

2. Thick structural TPS could interact with the CEA in an 
unforeseen negative way
– Example: TPS could bunch/mushroom around nose, 

leading to premature C-OS loading

3. On the other hand, HEEET layer(s) could absorb 
significant energy, assisting with off-nominal impact

Desired load path

15

Undesired load path

C-OS 
mounts

HEEET TPS

CEA

C-OS 
mounts

Pre-Decisional:  For Planning and Discussion Purposes Only



Mars Formulation

Jet Propulsion Laboratory
California Institute of Technology

• Bounding analyses (old EEV design)
1. PICA EEV model

• Baseline / lower bound model
2. Conservative HEEET IL model

• Tensile failure, no compressive failure
• More elastic (i.e. stiffer) than actual material 

which would have compressive damage
3. Rigid aeroshell

• Upper bound model

• Conclusion: HEEET will not prevent energy 
absorber from crushing as desired

– Addresses consideration/concern #1
– To address considerations #2 and #3, need to 

model HEEET and analyze EEV impact

HEEET TPS – Effect On CEA Crushing
Bounding Analyses
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Same failure mode;
Webs crushing 
beneath C-OS

Different failure mode; 
Loads driven through 
upper webs directly to
COS-to-EEV connection

Foam hidden from 
view in all images
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HEEET IL 
Initial Model Inputs Derived from Test Data
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Static Tensile Coupons

3pt Bend (Static & Dynamic) Coupons

St
re

ss
 

Strain

Modeling approach

EA (Warp)

EB (Fill)

GAB (Shear)
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HEEET IL Model Development
Tensile Coupon Testing

Warp direction 
failure

Fill direction 
failure

In-plane shear failure
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Strain

St
re
ss

Strain

St
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ss

Strain

St
re
ss

HEEET RL Warp Tensile Coupon Analysis HEEET RL Fill Tensile Coupon Analysis

HEEET RL Bias Tensile Coupon Analysis
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HEEET RL Model Development
Tensile Coupon Testing

Warp direction failure

Warp direction 
failure

Fill direction 
failure
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Strain

St
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Strain

St
re
ss

Strain

HEEET RL Warp Tensile Coupon Analysis HEEET RL Fill Tensile Coupon Analysis

HEEET RL Bias Tensile Coupon Analysis
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HEEET IL Model Development
Wide Span Dynamic 3pt Bend Testing

• Goal: Match energy absorbed, load history, and 
deflection profile

• Results: Peak loads and deflections are on the right 
order, but energy absorbed may be over- or under-
predicted depending on support span

20Pre-Decisional:  For Planning and Discussion Purposes Only
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HEEET IL Model Development
Short Span Dynamic 3pt Bend Testing
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CEA Web Pattern and Layup Iterations
Hard Surface Impact – PICA vs. HEEET

• Initial hard surface impact results 
for HEEET TPS are encouraging

– Results before premature model 
termination suggested 
equivalent or lower C-OS loads 
with HEEET vs. PICA

– No apparent bunching, inward 
ingression, or other negative 
interaction with CEA

– Material model is still too 
immature to be conclusive, 
though; further development 
and/or testing is needed

22

<3000 G <3000 G

Early termination 
due to model 
instabilities

PICA EEV HEEET S/IL EEV V2.4: Added more webs
(t2) to outer hoop
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• Testing and corresponding analyses for developing validated EEV off-nominal 
impact models via a building block approach are progressing 

• Analyses of latest CEA design iterations with models developed thus far are 
encouraging for meeting C-OS loading and CEA crush margin performance metrics

• HEEET will not prevent proper crushing behavior of the CEA

• Initial hard surface impact results for HEEET TPS suggest similar or possibly lower 
loads compared to PICA
– Further development and possibly testing is needed to confirm HEEET behavior

• Future/on-going work
– Continue CEA element testing and model validations
– Utilize Quantification of Margins and Uncertainties (QMU) approach, particularly 

to quantify modeling uncertainties
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Two major classes of blunt impact energy absorber architectures considered:

Energy Absorber Design Architecture

25

“Shock Absorber” Architecture “Crumple Zone” Architecture

• Energy is dissipated by internal energy absorber 
(crushables, plastic deformation, etc.)

• Need large stroke energy absorber that doesn’t 
de-couple the payload from the structure

• Exterior structure deforms very little
• Therefore, external structure must be very 

stiff and strong → Heavy design

• Energy is dissipated by deformation and failure of 
the structure itself

• Material ahead of payload absorbs impact energy
• Structure adjacent/behind the payload remains 

intact and maintains coupling with the vehicle
• Lower mass option; approach chosen for the 

EEV CAM

Payload

Hard Shell

Tension cords

Hex Cell
(MSR-2003)

Composite Web 
+ Foam

Payload

Payload

Payload
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• Current metrics in use:
– C-OS Loading

• In-direct measure of containment failure
• Loads defined at the CAM/C-OS interface
• Estimate C-OS can be designed to

withstand 3000 G
– Design, analysis, and testing is being

conducted in FY19 to verify

– CEA Crushed Height
• Fully crushed material is stiff and

hard to characterize
– Loads increase drastically
– FE models are also likely unreliable

• Estimate 75% stroke efficiency
• Therefore, fully crushed height is 25%

of initial; apply safety factor

Metric Allowable F.S.
1. C-OS Loading 3000 G 1.0
2. CEA Crushed height 25% 1.3

CEA Crush 
Height

C-OS 
Acceleration
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• Eventual goal: Develop metrics and models 
for predicting SCV and PCV failure

– Direct measures of whether containment has been 
maintained or not

– Longer-term effort requiring dynamic/impact testing 
of container articles and corresponding model 
development to establish reliable metrics and 
analytical approaches

• (Also tasks I am working)

F

σ

τ

Total line
load

Component stress
or line load

PCV Joint Load

SCV Seal 
Gapping

PCV & SCV 
Wall Stress

CEA Crush 
Height
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• Avoid crushing CEA beyond its stroke efficiency
– Fully crushed material is stiff and hard to characterize

• Loads increase drastically after this point
• Models also become unreliable after this point

– Estimate 75% stroke efficiency for CEA structure
– Therefore, fully crushed height is 25% of initial
– Use 1.3 factor of safety to provide buffer

CEA Crushed Height Metric

Stroke efficiency Fully crushed

Fully crushed * FS

𝒉𝒇𝒖𝒍𝒍𝒚 𝒄𝒓𝒖𝒔𝒉𝒆𝒅
𝒉𝒇𝒖𝒍𝒍𝒚 𝒄𝒓𝒖𝒔𝒉𝒆𝒅 " 𝑭𝑺𝒄𝒓𝒖𝒔𝒉𝒉𝒎𝒊𝒏 𝒉𝒆𝒊𝒈𝒉𝒕

𝑀𝑆!"#$% =
ℎ&'( %)'*%+

ℎ,#--. !"#$%)/ % 𝐹𝑆!"#$%
− 1

𝒉𝒊𝒏𝒊𝒕𝒊𝒂𝒍

𝒉𝒇𝒖𝒍𝒍𝒚 𝒄𝒓𝒖𝒔𝒉𝒆𝒅
= 𝟎. 𝟐𝟓 " 𝒉𝒊𝒏𝒊𝒕𝒊𝒂𝒍
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CEA Modeling for Impact
Building Block Approach
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Hard Surface impact
Sharp Edge impact

Rigid, filleted edge, 1 cm,
45˚ slope, 6 cm tall

Rigid (infinitely stiff), flat surface

DAC2 Off-Nominal Landing Cases

Case 1: Soft Surface
• High surface normal velocity
• Dry hard soil, all layers
• High AoA on sloped ground

Case 2: Hard Surface
• High surface normal velocity
• Rigid, flat surface
• AoA relative to surface

Case 3: Sharp Edge
• High surface normal velocity
• Rigid filleted edge:

1 cm / 45˚, 6cm tall

Case 4: Inverted
• Low normal velocity
• Rotational velocity relative 

to CG

Potential Off-Nominal Impact Cases

Surfaces were chosen to be conservative 
and challenge the EEV design.
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CEA Material Model Development
LS-DYNA Mat58

• Orthotropic model with direction-dependent failure; Suitable for both carbon and Kevlar composites
• Arbitrary stress-strain response can be defined for EA, EB, GAB, both in the tension and compression
• Post-damage response can capture complete loss of load carrying capability (appropriate for tensile failure) 

or sustained a load/stress carrying capability after failure (appropriate for compression and shear failure)

31

Mat58 Custom EA/EB S-S Response

Mat58 Custom GAB S-S Response

(0/90) fabric layup tensile coupons

(0/90) fabric layup compression 
cylinder coupons

(±45) fabric layup tensile coupons

(±45) fabric layup compression 
cylinder coupons

Carbon fiber
Kevlar fiber

Carbon fiber
Kevlar fiber

Replace with actual test 

pics or better graphic

Replace with actual test 

pics or better graphic


