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Abstract—Interplanetary exploration occurs at vast distances
that severely limit communication bandwidth to spacecraft ex-
ploring other planets. It is possible to collect much more
scientific data than can ever be downlinked given current com-
munication capabilities. Therefore, we are developing a system
called COSMIC (Content-based Onboard Summarization to
Monitor Infrequent Change) that will opportunistically analyze
data onboard a Mars orbiter to alert scientists when meaningful
changes have occurred. COSMIC will allow future spacecraft
to continuously collect data to search for rare, transient phe-
nomena such as fresh impacts or seasonally changing polar
landforms under a constrained downlink budget. In this paper,
we describe the overall goals and architecture of COSMIC,
plans to enable specific scientific studies, label acquisition to
enable supervised approaches to surface landform classification,
a new machine learning evaluation framework for analyzing
the trade-offs between classifier accuracy and computational
requirements, and lessons learned about constraints that COS-
MIC will face operating onboard a spacecraft. In particular, we
discuss design considerations surrounding computational and
storage constraints, change detection strategies, and localizing
detected landforms of interest within a global coordinate frame.
Finally, we describe challenges and open research questions that
must be addressed prior to deploying COSMIC.
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1. INTRODUCTION
The modern era of space exploration has witnessed an ex-
plosion in science instrument capability. Higher spatial,
temporal, and spectral resolutions now capture observations
that have revolutionized planetary science, permitting un-
precedented maps of landforms, mineralogy, and thermal
properties [1], [2]. Unfortunately, the resulting rise in instru-
ment data collection has outstripped the much more slowly
growing communications bandwidth back to Earth. This has
created a data crisis at the point of collection: we can trivially
gather more data than can be downlinked for analysis. This
is especially true for outer planets and other distant targets
of exploration, but is even the case for neighboring planets
like Mars. Mission scientists have responded by carefully tar-
geting observation requests: we obtain low-resolution maps
of large regions to inform hand-selection of areas of interest
for high-resolution observation using complementary instru-
ments. For example, on the Mars Reconnaissance Orbiter
(MRO) spacecraft, landforms identified with the 6 m/pixel
resolution Context Camera (CTX) instrument [3] might be
used to target observations with the 0.25 m/pixel resolution
High Resolution Imaging Science Experiment (HiRISE) in-
strument [1]. The role of the mission planning scientist
has thus become a fundamental part of the flight operations
process. Expert scientists able to receive new data, deduce
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its scientific content, and optimize follow-on behavior ensure
the highest science yield from these expensive, rare missions.
For example, the MRO science planning cycle is performed
on a fortnightly schedule [4].

Scientific inquiry using this human-in-the-loop model has
provided an excellent understanding of the surface morphol-
ogy of Mars, seasonal behavior, and the dynamic past forces
resulting in the impressive diversity of the red planet. Recent
evidence has shown, however, that the surface of Mars is
not nearly as static as once thought. Frozen carbon dioxide
and water ice are seasonally redistributed from pole to pole
with sublimation forming pitted terrain resembling Swiss
cheese and violent eruptions of dusty vapor that are dispersed
over the surface by wind [5], [6]. Dust devils seasonally
scour the surface leaving vast, interconnected trails [7], [8].
Superimposed upon this dynamic landscape, meteors create
blast-like marks radiating from sharp, fresh craters, some of
which can reveal ice trapped beneath the surface [9].

Mission instruments have captured dynamic events in
scientist-targeted images chiefly through serendipity. As the
onset of these events is unknowable, it is only by luck that
scientists happened to request images of the same location
both before and after, or during, the change, often in an image
taken for an entirely different reason. Thus, surface change
detection is under-served by the human-in-the-loop model
due to the need to downlink repeat images of any locations of
interest. For example, there are nearly 7000 HiRISE obser-
vations in the Planetary Data System (PDS) archives whose
purpose is described as some form of “monitoring.” There-
fore, the detection, capture, and summarization of change
and dynamic events has become one of the primary goals
of onboard autonomy, in Mars orbit and beyond [10]. To
serve this need, a novel operational paradigm and associated
autonomy capability is required.

In this work, we address the specific challenges of detecting
surface change onboard future Mars orbiters using imagers
modeled on the current HiRISE and CTX instruments. We
assume that future imagers at Mars will be capable of ob-
serving as frequently as Earth-observing spacecraft, whose
power and thermal systems are designed to operate for longer
periods to take advantage of the higher downlink bandwidth
in low-Earth orbit. We propose to couple the more fre-
quent imaging cadence with upcoming advances in High-
Performance Spaceflight Computing (HPSC) platforms [11]
to develop a new autonomous system, COSMIC, capable of
detecting and summarizing active change to avoid unneces-
sarily downlinking repeat images for the purpose of ground-
based monitoring. The faster cadence of change detections
at a global scale will allow scientists to better characterize
transient Martian events and sample change frequency in a
more unbiased manner. COSMIC will supplement regular
scientist-selected observations.

This paper does not report on a completed, validated system
but rather exposes the foundational concepts within COSMIC
and reports on lessons learned, which are applicable more
generally to deployed machine learning systems under com-
putational constraints. We describe how the system architec-
ture of COSMIC allows change detection of small landforms
globally, including challenges related to onboard storage and
localization of landforms. Further, we describe plans to
address trade-offs between accuracy and computational com-
plexity of classifiers for landform detection given onboard
processor constraints. Finally, we describe our experience
collecting crowd-sourced labels to train supervised classifica-

tion algorithms for detecting specific landforms or regions of
interest. Our preliminary results demonstrate the feasibility
of a system like COSMIC, highlight its benefits to future
Mars missions, and establish areas of focus for future work.

2. SYSTEM ARCHITECTURE OVERVIEW
The core goal of COSMIC is global-scale change monitoring
to detect rare, transient events on the surface of Mars. One
approach to change detection uses at least two images of the
same location that are co-registered and compared at the pixel
level to determine areas of alteration. While COSMIC can
support this direct form of change detection, we show in Sec-
tion 3 that such an approach is only feasible for small regions
or at low resolution globally. To solve the global detection
problem, COSMIC will build a large onboard database of
summarized findings within high-resolution images. Sum-
maries include both identified landforms and regions iden-
tified by visual salience then classified into one of several
categories [12]. Change is detected by comparing these
landforms and regions rather than raw pixels. Figure 1 shows
the modules of the COSMIC architecture used to implement
this change detection strategy, with more details provided
below.

Investigation Coordination - The Arbiter

The Arbiter will drive investigations, coordinate the execu-
tion of modules, and manage data storage. It will serve as
the primary interface through which the system is accessed
and commanded by scientists. Note that COSMIC does not
interfere with any scientist-targeted observations. This is a
crucial issue for mission infusion, as onboard autonomy has
only begun to build trust in the planetary science community.
Instead, COSMIC will enable scientists to pose new questions
about previously unattainable observations, receive alerts and
reports on potential change events, and monitor Mars in the
global change detection context.

Process Support

Process Support modules will provide services that are uti-
lized across the Science Modules. Traditionally, the function-
ality provided by these modules would be part of a ground-
based data processing system. However, COSMIC’s success
requires these functions to be performed onboard.

Alignment— This module will enable the alignment or lo-
calization of one image with respect to another image or a
global coordinate frame. The alignment module will work
by identifying tie-points within a new image, which are
matched with tie-points extracted from a reference image.
The requirements of this localization subsystem are described
further in Section 3.

Vault—The Vault will be an onboard database storing data
products from prior and on-going investigations, support-
ing metadata, reference images of key regions of interest,
and various configurations. As discussed in Section 3, the
format of data products will emphasize the conservation of
space, relying on terse descriptive representations as opposed
to complete image data. Highly salient regions would be
summarized here, providing an encyclopedic, global map
of overall potential interest. Due to its size, the onboard
database is not intended to be downlinked completely. In-
stead, scientists may issue analytical SQL-like queries to the
spacecraft where they are evaluated to provide summaries
returned to Earth. For example, scientists might ask for all
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Figure 1: The architecture of the COSMIC system. The gray boxes at the left represent functions that are accessed through
the spacecraft’s operating system: uplink of commands from Earth, downlink of data back to the ground, and image acquisition
through the orbiter’s imaging instruments. The remaining modules are color-coded according to their functionality: blue for
Process Coordination, green for Process Support, and brown for Science Modules.

fresh impacts between given date and latitude ranges.

Science Modules

Science modules will identify, classify, and detect change in
surface landforms and regions of interest. The modules will
support different modes of investigation, described below.

Target Monitoring—Scientists may specify small regions with
change potential that are imaged at full resolution at each
opportunity. Each image is aligned with previous images for
pixel-based change detection. When changes are detected,
alerts will be sent to the ground to notify scientists, who
can then choose to downlink the detections or save them
for later access. This saves bandwidth over the approach of
downlinking all images and analyzing them on the ground.

Region ID— Global planetary change detection includes a
large regional context that can span much or all of an image
rather than individual landforms. The detection and identifi-
cation of large regions of interest will be another COSMIC
capability, by discovering both regions similar to a known
catalog of scientifically interesting terrain types and regions
that are different from their surroundings without a guiding
library of known targets.

Region Summary— Each identified region will be charac-
terized by boundaries and summaries of shape and visual
properties. Image segmentation will be used to summarize
visually distinct regions within images that do not have
explicitly defined types identifiable using Region ID.

Landform Classification— Supervised classification algo-
rithms will be used to find landforms of interest (e.g., craters,
dunes, dust devil tracks). As classification is a computa-
tionally expensive process, a relatively quick visual salience
estimate [12] will be used first to focus attention on candidate
regions. The salience preprocessor is necessary for real-time
processing of streaming, high-resolution imagery. Classifi-
cations with high confidence will be stored in the onboard

database to provide additional context for alerts and change
reports. While the classification process does not explicitly
perform change detection, some surface landforms are direct
indicators of recent change, such as the distinct patterns
surrounding fresh meteorite impacts.

Change Detection—The Change Detection module will com-
pare classified landforms with previous detections to de-
termine if any new landforms have appeared or any prior
landforms are no longer visible [12]. This form of change de-
tection, based on differencing objects rather than raw pixels,
addresses the data volume and computational constraints of
an onboard planetary monitoring system. Maps of planetary
change can be continually updated, with alerts and reports
sent to Earth for areas of change.

Together, these capabilities will autonomously produce a
rich and thorough map of the surface of Mars in terms of
visual interest, identified landforms, regions of interest, sta-
tistically distinct regions, and high-resolution pixel captures
surrounding ground-specified target regions. The utilization
of this database to provide alerts and reports will better inform
ground scientists, who will remain in full control without
being required to regularly maintain the operation of the
autonomous system.

3. DESIGN CONSIDERATIONS
When designing a system such as COSMIC to operate on-
board a spacecraft, there are unique design considerations that
must be made to accommodate the computational, memory,
power, and other requirements. Here, we describe a subset of
those considerations for the science, storage, and localization
subsystems.

Science Modules

The capability of classifying scientifically interesting regions
and landforms is critical to COSMIC. Onboard image clas-
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sification is a complex problem that requires considering
many factors, including CPU speed and memory constraints.
To estimate the computational requirements, we are explor-
ing three different image classification strategies: standard
feature-based classification, pixel-based classification, and
state-of-the-art deep learning classifiers.

Classical machine learning requires manual feature extraction
before classification. Features must be engineered care-
fully to differentiate between classes of interest. General
texture-related characteristics can be captured by extracting
the minimum, maximum, median, and other statistics from
images, while Scale Invariant Feature Transform (SIFT),
Local Binary Pattern (LBP), and Gray-Level Co-Occurance
Matrix (GLCM) features can be used to summarize the local
structures of images [13]. Although feature extraction can be
computationally expensive, carefully engineered features can
provide an efficient and effective summary of image contents
that enables computationally inexpensive classification.

As an alternative to classical machine learning algorithms
operating on pre-extracted image features, the TextureCam
algorithm uses a random forest to perform pixel-wise clas-
sification for recognizing geological features [14]. Because
TextureCam only computes features as they are needed at
each branch in each decision tree, it can feasibly be evaluated
using onboard processor architectures. For example, Texture-
Cam was deployed on the Intelligent Payload EXperiment
(IPEX) CubeSat [15] which carries a 400 MHz Atmel ARM9
CPU without hardware floating point unit and 128 MB of
RAM, and the even more constrained Earth Observing-1
(EO-1) spacecraft, which has only a 12 MHz Mongoose M5
processor [16].

Since the breakthrough of AlexNet [17] in the 2012 ImageNet
competition, deep convolutional neural networks (CNNs)
have become increasingly popular for image classification
problems. One of the advantages of deep CNNs is the per-
formance measured in classification accuracy, which comes
at the cost of relatively high computational complexity. The
number of multiply-add operations required for inference can
be measured as a function of the size of the input image and
the structures of layers in the network. For example, 15.5
billion operations are required in order for GoogLeNet to per-
form a single forward pass for one image. As a point of com-
parison to spacecraft computing rates, the radiation-hardened
RAD750 processor onboard the MRO spacecraft can process
approximately 200 million instructions per second (MIPS).
With the current limited spacecraft computational resources,
it is not feasible to deploy deep CNN models even with the
recent advances in reducing precision of operations, number
of operations, and model size [18]. NASA’s HPSC program
aims to improve the current state-of-art spacecraft processors
by two orders-of-magnitude by 2021 [11], which will bring
the computational rate to approximately 50,000 MIPS. The
possibility of deploying deep CNN models using an HPSC
system remains to be examined in the future.

Science Storage

A key component of COSMIC is the ability to store a
database onboard the spacecraft of known landforms and
regions to serve as a basis of comparison for change detec-
tion. One straightforward approach to change detection is to
store an onboard global map of the surface with high enough
resolution to detect the appearance of new landforms of inter-
est. However, with small landforms of interest, the storage
requirement for a map to resolve such landforms quickly
becomes infeasible. On the other hand, a database that just
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Figure 2: A comparison of the storage required by landforms
of given sizes and densities, using a map-based approach
(solid) versus a database-based approach (dashed).
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Figure 3: The estimated storage requirement for craters
exceeding a given diameter. For comparison, the size of the
existing Robbins Crater Database derived from THEMIS im-
ages and estimated sizes for databases derived from imagers
with other resolutions are indicated with dashed lines.

stores landform locations and some additional metadata has a
size that depends only on the density of the landform, not its
size.

As a concrete comparison, suppose a landform has a constant
size (diameter) s and average surface density ρ. Let A♂
be the surface area of Mars. Then there will be

(
ρA♂

)
entries in a database, versus (A♂/s2) pixels in a map with
pixel size on the order of the landform size. If a pixel is
represented with 1 byte, and a database entry with 100 bytes,
then Figure 2 shows the storage requirement as a function
of landform size for the map-based approach in contrast
with the requirement for the database-based approach with
various landform densities. The figure shows that a map-
based approach only requires on the order of 1 gigabit to
resolve landforms on the order of 1 km in size, but 1 petabit
to resolve landforms on the order of 1 m in size. In contrast,
landforms of any size can be stored in less than 100 gigabits
as long as their density remains below 1 km−2.

Above, we made a simplifying assumption that each landform
is roughly constant in size. However, there exist classes
of landforms that manifest at various scales. In particular,
impact craters of all sizes exist on the surface of Mars.
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defining a polar cap boundary with errors at most ε. The re-
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Furthermore, the density of craters on Mars is not constant
with respect to their size. Instead, cumulative crater counts
on Mars follow a power law given by N≥d ∝ d−1.9, where
N≥d is the number of craters exceeding some diameter d [19].
Using this power law estimate for the size–frequency distribu-
tion of impact craters on Mars, we can derive storage require-
ments for all craters exceeding some diameter. Assuming
roughly 10 bytes per crater to store each crater’s location
and diameter, Figure 3 shows the storage requirement for all
craters exceeding a given diameter. The figure compares the
estimate with the actual size of the Robbins Crater Database,
derived from Thermal Emission Imaging System (THEMIS)
images [20], [2]. Figure 3 also shows estimates of how much
space would be required to store all craters identifiable in im-
ages with resolutions comparable to that of either the HiRISE
or CTX instruments. The corresponding crater diameters are
computed by multiplying the resolutions of CTX (6 m) and
HiRISE (0.25 m) by 10, since the Robbins Crater Database
was only able to robustly identify craters that were 10 pixels
across. In this case, we see that all craters identifiable at CTX
resolution can be stored within 10 gigabits of memory.

In addition to landforms, COSMIC will also need to store
regions of interest over time to detect change. The same
argument as above can be used to show why storing polygonal
region boundaries is more efficient than storing map-like
inclusion masks for regions, assuming region boundaries
are relatively smooth so that their perimeter–to–area ratios
remain less than the ratio of storage costs of mask pixels to
vertices. To see how large an individual region might become,
consider a concrete example region type: an entire polar ice
cap that can vary in extent seasonally. For simplicity, assume
that the smoothness of the cap boundary satisfies a Lipschitz
condition, meaning that for every change in longitudinal
extent by ∆x, the change in latitudinal extent is bounded
by L (∆x), for constant L. Then to trace out the polar cap
extent to within ε everywhere along the perimeter, it suffices
to sample points with a spacing in the longitudinal direction
of (2ε/L). As a conservative upper bound, suppose a polar
cap can grow to consume an entire hemisphere of Mars. In
this case, the perimeter in the longitudinal direction is the
circumference of Mars at its equator, so the number of vertex

points required given the spacing above is n ≥
2πR♂L

2ε =
πR♂L

ε , where R♂ is the radius of Mars. Assuming each
vertex requires on the order of 10 bytes to represent, Figure 4
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Figure 5: Registration error of CTX images using the VPT
algorithm with various tie-point densities. Both the median
and IQR of registration errors are shown, which the dashed
line indicating the theoretical floor due to label noise.

shows the overall storage requirement for the full polygon
given the desired error ε in the boundary for a range of values
of the Lipschitz constant L. Required storage ranges from
1 megabit to 1 gigabit for errors down to 100 m, even for large
constants. These sizes are small enough to compute and store
on a regular basis.

What amount of onboard storage can we expect for a future
Mars orbiter? The MRO spacecraft, launched in 2005, has
over 100 gigabits of onboard storage [4]. It is not unreason-
able to assume that an order of magnitude increase in this
capacity is possible for future Mars orbiters. Therefore, the
examples described above—all landforms with an average
density less than 1 km−2, all craters visible with CTX resolu-
tion, polar cap extents with 100 m accuracy—can all feasibly
fit within an onboard database.

Localization

Given the strategy for change detection via comparing
detected landforms with a database of known landforms,
COSMIC will be required to accurately map locations in
image coordinates to real-world coordinates on the surface.
For landforms that are locally dense (such as impact craters,
dunes, and polar features), the level of accuracy required is
roughly on the order of the size of those landforms on the
surface. Very accurate estimates of a spacecraft’s ephemeris,
or position and velocity with respect to Mars, can be made
periodically to within several meters, but the spacecraft’s
state begins to drift slowly between these updates. For the
MRO spacecraft, the drift rate translated to ground pointing
error can be as high as 8.5 m/h [4]. The ephemeris of MRO
is updated frequently enough so that pointing error never
exceeds several kilometers. Therefore, COSMIC must reduce
pointing errors from potentially several kilometers to a level
suitable for identifying small landforms on the surface.

The process of localizing a spacecraft with respect to land-
forms is also performed during Terrain Relative Navigation
(TRN), which is typically used during Entry, Descent, and
Landing (EDL) or navigation around small bodies and relies
on storing onboard maps [21]. However, as for science
purposes, storing an onboard map for the entirety of Mars
at a resolution sufficient for precise localization is infeasible.
Instead, a set of image features such as SIFT can be pre-
extracted from a global map, then matching features can be
found within orbital imagery during flight [22].
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Figure 6: Required onboard storage capacity to achieve
the corresponding localization error. Storage requirement is
expressed both in terms of total storage for global coverage
as well as storage per unit area.

There are many algorithms that perform tie-point based im-
age alignment, but one implementation designed for use on
spacecraft is the Visual Precision Targeting (VPT) algorithm
developed for Mars rover instruments [23]. We evaluated
the ability of VPT to accurately align two orbital images
using 10 pairs of manually co-registered CTX images. From
the known alignment, the images were offset randomly by a
Gaussian with standard deviation corresponding to the offsets
typically experienced by MRO. Figure 5 shows the resulting
registration error when various densities of tie-points are
extracted from each of the images. Both the median and inter-
quartile range (IQR) across the random samples are shown.
Due to errors in the human-labeled ground truth tie-points,
error below the dashed line is not expected for images of this
resolution.

While the experiments above evaluate registration perfor-
mance using CTX images, we could also in principle use
higher resolution images for localization, assuming we had
already refined the spacecraft’s ephemeris to estimate the
pointing location on the surface to within a comparable factor
as MRO’s pointing error is to CTX resolution. Thus, we
can rescale both the tie-point density and registration error
in Figure 5 to correspond to images of other resolutions. The
resulting achievable trade-off between localization error and
tie-point density is illustrated in Figure 6. For a desired
localization error along the x-axis, the required storage for
VPT tie-points (40 bytes each) is shown along the y-axis.
Required storage is expressed both in terms of total storage
for global coverage as well as storage per unit area if high-
precision localization is desired only within a relatively small
region of interest. Given around 1 terabit of onboard storage,
it is feasible to localize anywhere on Mars to within 10-
100 m, or more accurately within select regions.

Finally, we consider how frequently onboard localization
must be performed. Suppose we desire to estimate the
spacecraft’s ground-track pointing location to within e at all
times. We could localize to within e/2, then wait for the
spacecraft’s estimate to drift (at roughly 8.5 m/h) back to e.
Even if the desired error e = 1 m, VPT would only need to
be invoked once every several minutes. In fact, it might be
possible to extract tie-points from only certain latitude bands
across the surface of Mars in such a way that the spacecraft
can still be re-localized at the required cadence. This strategy
could maintain the desired localization error while reducing
the total storage required for tie-points.

4. EXAMPLE SCIENCE APPLICATIONS
There are several ongoing and dynamic events and processes
on Mars that are valuable to identify and catalog. In this
section, we describe three examples of scientific phenomena
that create surface changes of the kind that the COSMIC
system is designed to detect. We use data from the HiRISE
instrument on the MRO spacecraft to provide examples of
each landform. The greatest surface coverage comes from
HiRISE red-band observations (550–850 nm), which are dis-
played as grayscale images. We are collecting labels for each
of these landforms to determine how capable the supervised
classification strategies described in Section 3 are at detecting
these landforms under onboard computational limitations.

Fresh Meteorite Impacts

The surface of Mars is heavily cratered, and it continues
to accumulate new meteorite impacts each year. Typically
these manifest as blast zones that modify the surface, e.g., by
removing light-colored dust and exposing darker bedrock [9];
see Figure 7a. The radial shape of the blast varies as a
function of the angle of the impact, current wind conditions,
and local terrain that may interfere with the ejecta or dust
clearing processes. Some meteors break up into multiple
impactors and create clusters of impacts, or remove darker
dust from a lighter underlying bedrock. In some cases, the
impact exposes underlying subsurface ice, which sublimates
and disappears within a few months [24]. By studying
these impacts to make cratering models, the duration of
surface processes and the age of landscapes can be better
estimated, making it easier to interpret Martian geological
history. However, only a few hundred fresh impact sites have
been imaged by HiRISE, primarily in homogeneous dusty
areas [9]. Thus, the ability of COSMIC to better detect and
image fresh impacts would be valuable for planetary science.

To date these impacts have been discovered by careful in-
spection of lower-resolution (6 m/pixel) images obtained by
the CTX instrument on MRO, followed by the collection of
a high-resolution image from HiRISE for confirmation. No
one has yet attempted to catalog all impacts in the more than
50,000 HiRISE images (each one up to gigapixels in size)
collected since 2006.

The Mars InSight mission, which landed in November 2018,
carries a sensitive seismometer that is able to detect any
nearby meteorite impacts that occur. InSight is expected to
observe 1 to 3 impacts per year that strike within 1200 km of
its landing site [25]. In addition to capturing the first in-situ
recording of a Martian impact, InSight will use the seismic
signal and its reflections to build a map of the subsurface
structure of the crust and upper mantle. Correlating any
detected signals with visual images of their associated impact
sites will be of key scientific value for the mission.

Polar Landforms

On the southern pole of Mars, scientists have observed two
particularly interesting types of dynamic terrain called “Swiss
cheese” and “araneiforms.” Both are consequences of sea-
sonal carbon dioxide (CO2) ice accumulations on or below
the surface. During the Martian winters, CO2 will cool and
form ice both above and below the surface. As springtime
approaches, the sun will warm the CO2 ice and cause it to
sublimate. The rapid transformation of the CO2 results in the
formation of different landforms.

Swiss Cheese Terrain was first discovered by the Mars
Global Surveyor in 2000 and can be characterized as cavities
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(a) A fresh impact
(ESP 041953 1885)

(b) Swiss cheese terrain
(ESP 022054 0930)

(c) Araneiforms with deposits
(ESP 047922 0990)

(d) Dust devil tracks
(ESP 036324 2325)

Figure 7: Transient or dynamic landforms observed from the HiRISE instrument as examples of COSMIC applications.

in the surface of Mars due to the sublimation of CO2. The
size of these cavities can be hundreds of meters wide and less
than ten meters deep [5]. Their name comes from their similar
appearance to the holes in Swiss cheese; examples can be
seen in Figure 7b.

Araneiforms, sometimes called “spiders,” are another result
of subterranean CO2 ice sublimation. As the surface warms,
the sublimated CO2 will form cracks in the surface to create
vents for the gas to escape [6]. The spider-like appearance of
these landforms can be attributed to darker dust accumulating
around the surface vents formed by the escaping subterranean
gas, as seen in Figure 7c. The formation mechanisms for
these landforms are not entirely understood, so they are
objects of continued study that will provide insight into the
past and current Martian climate. Because polar landforms
undergo significant seasonal change, COSMIC will be well-
suited to studying them and alerting scientists as the most
interesting changes take place.

Dust Devils

Dust Devils are tornado-like vortices that form due to dif-
ferences in local air temperature and are rendered visible
by collected dust and other debris [26]. While naturally
occurring on Earth, we are interested in those found on Mars.
Earth-based dust devils are 2-3 orders of magnitude less
powerful than normal tornadoes, but their dust-lifting effects
can be rather significant on Mars [26]. Due to the reduced
atmosphere of Mars, tracks of dust devils can be found
on the Martian surface and are visible from current Mars
orbiters, as shown in Figure 7d. Locating and identifying dust
devils tracks form an important part of COSMIC’s science
capabilities.

Dust devils are particularly relevant to spacecraft operations
and power management as they provide a means for critical
dust removal from the solar panels of rover and landers [27].
Dust devils also contribute to noteworthy changes in albedo
on the Martian surface and provide vital insight for geolo-
gists [7]. Geologists utilize the presence of dust devil activity
as a way to understand the granularity of the surface particles.
The tracks also provide information about the winds in the
lower atmosphere which can be used to model erosion and
deposition on the surface [8].

Label Gathering

To enable COSMIC to automatically identify the scientific
landforms of interest described above, labeled examples of
such phenomena are used to train supervised learning al-
gorithms. Since label collection can be an expensive and
labor-intensive process, we have created a citizen-science
project on the Zooniverse web platform to crowd-source
labels.2 Zooniverse provides customizable user interfaces
for labeling data in various ways and establishes a commu-
nication channel between researchers and citizen scientists.
We created four Zooniverse workflows to collect labeled data
for fresh impacts, Swiss cheese, araneiforms, and dense dust
devil fields. Citizen scientists are provided with detailed
tutorials on how to perform the labeling tasks, and talk boards
are made available to both citizen scientists and planetary
domain experts to discuss ambiguous examples or interesting
observations.

In order to utilize different classification strategies, citizen
scientists are asked to provide both pixel-level and image-
level labels. Pixel-level labels in the form of arbitrary poly-
gons would enable a machine learning system to mark the
exact locations of identified landforms and regions, whereas
image-level labels would enable a machine learning sys-
tem to classify landforms already identified by bounding
boxes. This labeling strategy is somewhat different from that
employed by similar, previous Zooniverse projects such as
Planet Four, which had users explicitly label certain shape
properties of araneiforms to evaluate hypothesized formation
processes [6]. In contrast, our task is intended only to learn
more generally how to localize these landforms within orbital
imagery rather than to extract specific properties for scientific
analysis.

There are a total of 14,512 images across the four labeling
workflows, and we specified that each image should be
labeled by 11 different users to enable robust consensus
labeling. Label accuracy can depend on a user’s background,
such as previous experience analyzing orbital imagery, so
requiring that each image be labeled multiple times helps
improve label quality. For image-level labels, if a strong
majority of users provide the same label, then this is taken as
ground truth. Otherwise, a domain expert will take a closer
look to break ties. For pixel-level labels, a probabilistic label
can be derived for every pixel by counting the fraction of
users who included that pixel in their labeled region.

2https://www.zooniverse.org/projects/wkiri/cosmic
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5. SYSTEM EVALUATION STRATEGY
The labels collected for the science use cases described in
Section 4 will be used to determine how effective machine
learning algorithms are at identifying targets of interest. More
importantly for COSMIC, we are interested in the trade-
off between classification performance in terms of accuracy,
precision, recall, etc., and computation requirements such as
runtime and memory consumption. We have developed a new
framework, Distributed Optimization of ML Incorporating
Nested Evaluation (DOMINE), to robustly evaluate these
trade-offs.

Manually constructing a quality machine learning algorithm
is a multi-step process which includes data understanding,
model selection, hyperparameter optimization, and evalua-
tion. Our goal is to create an automated machine learning
system that supports both traditional and deep learning based
algorithms with hyperparameter optimization in a fully cross-
validated manner. In addition, we also aim at building the
system with reasonable interpretability and traceability such
that it can help machine learning researchers and engineers
determine the model that is most suitable for the problem.

DOMINE provides a distributed solution to this need. Its
architectural diagram is shown in Figure 8. DOMINE
consists of one configuration file, one server instance, as
many client instances as needed, one evaluation instance,
and one database instance. The configuration file is the
entry point that defines the parameters of a DOMINE exper-
iment, including the location of the data set on each client
(processing) machine, the cross-validation method, and the
learning algorithms with associated hyperparameter ranges.
The server instance is responsible for generating tasks based
on the information provided in the configuration file. A
task in DOMINE is defined as the combination of a learning
algorithm with the associated hyperparameters to be explored
with respect to training and testing data. The client instance is
responsible for processing the tasks and returning the results
back to the server instance so that these results can be stored
in the database instance.

The results from all folds and hyperparameter options are
saved in the database to ensure traceability, interpretability
of results, and assessment of how sensitive an algorithm is
to changes in those parameter values. The distributed nature
of DOMINE enables many different parameter options to be
explored (using random or grid search) in parallel across each
fold-based split of the data into train and test sets.

DOMINE by default supports both traditional and deep learn-
ing classification algorithms, and it can also be expanded
to support custom classification algorithms. For traditional
algorithms, we utilize scikit-learn (sklearn) as the classi-
fication framework. We enable sklearn’s methods such
as sklearn.linear model.LogisticRegression
by building a wrapper layer. Feature vectors are required to
use these traditional algorithms. DOMINE does not provide
a feature engineering capability, but DOMINE can be con-
figured to enable sklearn’s recursive feature elimination
(RFE) estimator for feature ranking. For deep learning
algorithms, we support two CNN structures: AlexNet [17]
and Inception v3 [28]. We exploit transfer learning tech-
niques to fine-tune the CNN classifiers. The CNN classifiers
were pretrained on 1.2 million ImageNet [29] images, and
DOMINE adapts them to recognize new classes.

An example of results generated by DOMINE is shown in
Figure 9. This plot shows the trade-off in accuracy and

classifier evaluation time across three classifiers for a dataset
derived from the Zooniverse fresh impact labels. The x-
axis shows the classifier accuracy at distinguishing fresh
impacts from other images of the Martian surface, and the
y-axis shows the amount of time required to evaluate the
trained classifier on a new test image. The logistic regression
and random forest classifier are classical machine learning
(ML) approaches that use hand-engineered features (such as
properties of the image histogram), whereas AlexNet uses
a CNN-based approach with feature derived from the Ima-
geNet dataset. This shows that while AlexNet can achieve
marginally better accuracy, it does so at an increased com-
putational expense. Evaluating these trade-offs will be a key
aspect of COSMIC going forward.

6. LESSONS LEARNED
The process of developing a preliminary design for COSMIC
has revealed several important lessons about performing
change detection onboard a spacecraft. Foremost are the
design choices imposed by the relatively constrained com-
putational environment onboard most spacecraft computers.
Unlike many machine learning problem domains for which
virtually unlimited computing resources can be brought to
bear on the problem, here a careful trade-off between model
performance and computational cost must be made.

In addition to being compute-limited, the onboard setting
is also storage-limited. Accordingly, the strategy of direct
image comparison for change detection is not feasible for on-
board global change detection. Instead, we have identified an
alternative strategy, which is to extract landforms of interest
from orbital images, then perform change detection using a
database of known landforms. This strategy enables change
detection at a much smaller scale than would be feasible if a
high-resolution reference map were required.

We also identified localization of landforms in images as a
major challenge to the strategy of storing landforms with
their locations in a database. From Section 3, we see that
although tie-point based registration appears to be feasible to
localize landforms to within 10-100 m of their true locations,
the number of tie-points required to do this at a global scale
requires storage comparable to that for many of the science
targets themselves. If there are reliably identifiable types of
landforms such as impact craters that have sufficient global
density, then these landforms might serve as tie-points for
navigation while also serving a scientific purpose.

Unlike many ML problems in which classifiers and other im-
age processing algorithms are expected to encounter (almost
surely) unique test images drawn from some hypothetical
distribution, the COSMIC use case is different in that each
location on the surface will be classified repeatedly. Thus,
for COSMIC, we are making a special effort to evaluate the
stability of our algorithms under realistic variations in light-
ing conditions, viewing perspective, and seasonal changes.
Our initial plans to evaluate algorithms under the common
assumption of independent and identically distributed test
examples required modification to accommodate this stability
analysis, which explicitly compares outputs across pairs or
tuples of correlated examples.

Finally, we have learned about the costs and limitations of
labeling data to train systems that will be used to recognize
landforms of interest on the surface. Table 1 shows the
number of examples for each of the Zooniverse workflows,
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Figure 8: The architecture of the DOMINE system.

Table 1: Labeling costs and rates for Zooniverse workflows

Workflow Examples Time/Label Total Effort Label Rate Label Efficiency Total Time
Fresh Impacts 308 76 s 71 h 1.9 h−1 4.1 % 0.2 yr
Dust Devils 1138 8 s 29 h 8.2 h−1 1.9 % 0.2 yr

Swiss Cheese 5974 6 s 117 h 6.4 h−1 1.1 % 1.2 yr
Araneiforms 7092 37 s 793 h 5.4 h−1 5.5 % 1.7 yr

0.0 0.2 0.4 0.6 0.8 1.0
Average time (seconds per image)

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

Prediction Time v.s. Accuracy

AlexNet (accuracy=0.961)

Random Forest (accuracy=0.893)

Logistic Regression (accuracy=0.909)

Figure 9: An example output from DOMINE showing the
trade-off in accuracy and evaluation time requirements for
classical and deep learning algorithms.

as well as median time taken to label each example to date.
The total effort is our estimate for how many person-days it
will take to acquire 11 labels for each example (the retirement
criterion). Varying labeling times correspond to varying dif-
ficulty of the labeling tasks; some tasks require users to draw
detailed polygons for each example, whereas others only
require a simple “yes” or “no” response. The “Total Effort”
assumes that there is a single person labeling continually,
whereas in reality, examples are labeled at a particular “Label
Rate” depending on how many people are online and actively
labeling concurrently. We also show the “Label Efficiency,”
which is the observed utilization of labelers relative to a
single person labeling continually. This shows that while we
are drawing from a large pool of volunteers, we effectively

have the equivalent of one person labeling only 1–5% of
the time. The final column show the estimate total time
it will take to acquire all labels. Since we deployed the
Zooniverse project in December 2018, two of the workflows
(fresh impacts and dust devil tracks) have been completed,
but it is estimated to 1–2 years total for the araneiforms and
Swiss cheese workflows, which are still ongoing. Thus, there
is a substantial effort required to acquire the labels necessary
to train classifiers for COSMIC, in addition to the several
months that were required to set up the Zooniverse project
itself. An open question for future work is to determine how
many of these labels are necessary to achieve good classifier
performance; we likely can achieve reasonable performance
even with a subset of the labels.

While crowd-sourcing can help reduce the total time required
to acquire labels, there are limitations to the distinctions that
citizen scientists can reliably make while labeling, compared
with domain experts. For example, rather than focus on
distinguishing specific scientific classes of phenomena such
as araneiforms, we instead asked users to make higher-level
visual distinctions. We adapted our strategy to focus on
labeling according to classes that both amateur humans and
machine learning algorithms are more likely to discriminate
rather than attempt to make subtle distinctions that only an
expert might reliably discern.

7. CONCLUSIONS AND FUTURE WORK
The development of COSMIC to its current state both demon-
strates the potential benefits of monitoring for changes and
transient events onboard a Mars orbiter and highlights direc-
tions of future work required to deploy such a system suc-
cessfully. Given a better understanding of the requirements
and behavior of each component, we must build a framework
that integrates the various components together. Key to this
integrated system will be the Arbiter module that performs
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simple planning and scheduling of analyses to be performed
as data is collected. Because the Arbiter will be the primary
interface that scientists use to specify their preferences to
COSMIC, there are interesting open questions about how to
effectively command the Arbiter in a way that is both flexible
and intuitive, but leads to predictable and reliable behavior by
the system.

Characterizing the reliability of COSMIC’s performance on
identifying scientifically relevant landforms and regions will
consume a large portion of the effort going forward. Given
labels acquired from Zooniverse, we will perform a rigorous
analysis of the trade-offs in performance and classification
accuracy across the approaches described in Section 3. Per-
formance across a variety of computer architectures such as
the RAD750 and HPSC will inform spacecraft design for
future missions that wish to use a system such as COSMIC
to increase the amount of science value that can be returned
given a constrained downlink budget.

In addition to describing the computational constraints on
deploying machine learning systems onboard spacecraft, we
have discussed alternative designs for onboard storage sys-
tems that enable planetary-scale change detection without
requiring that a high-resolution map be saved as a baseline.
Similarly, we discussed strategies for localization of targets
identified by COSMIC using a tie-point based approach. Fi-
nally, we described an overall system architecture that allows
scientists to selectively monitor certain landforms and regions
of interest such as fresh impacts, polar landforms, and dust
devils. Our preliminary analysis indicates that although there
remain many areas of future research, COSMIC’s approach
to onboard science analysis is promising for future spacecraft
both at Mars and elsewhere in the solar system.

ACKNOWLEDGMENTS
We thank the Jet Propulsion Laboratory Research and Tech-
nology Development program for funding support. This
publication uses data generated via the Zooniverse.org
platform, development of which is funded by generous sup-
port, including a Global Impact Award from Google, and by
a grant from the Alfred P. Sloan Foundation. Part of this
research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. Copyright
2019. All rights reserved.

REFERENCES
[1] A. S. McEwen, E. M. Eliason, J. W. Bergstrom, N. T.

Bridges, C. J. Hansen, W. A. Delamere, J. A. Grant,
V. C. Gulick, K. E. Herkenhoff, L. Keszthelyi, R. L.
Kirk, M. T. Mellon, S. W. Squyres, N. Thomas, and
C. M. Weitz, “Mars reconnaissance orbiter’s high reso-
lution imaging science experiment (hirise),” Journal of
Geophysical Research: Planets, vol. 112, no. E5, 2007.

[2] P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C.
Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H.
Silverman, S. Ferry, M. Caplinger et al., “The thermal
emission imaging system (THEMIS) for the Mars 2001
Odyssey mission,” Space Science Reviews, vol. 110, no.
1-2, pp. 85–130, 2004.

[3] M. C. Malin, J. F. Bell III, B. A. Cantor, M. A.
Caplinger, W. M. Calvin, R. T. Clancy, K. S. Edgett,
L. Edwards, R. M. Haberle, P. B. James, S. W. Lee,

M. A. Ravine, P. C. Thomas, and M. J. Wolff, “Context
camera investigation on board the Mars reconnaissance
orbiter,” Journal of Geophysical Research: Planets, vol.
112, no. E5, 2007.

[4] D. Wenkert, N. Bridges, W. Eggemeyer, A. Hale,
D. Kass, T. Martin, S. Noland, A. Safaeinili, and S. Sm-
rekar, “Mro’s evolving process for science planning,” in
AIAA Space 2007 Conference & Exposition, 2007.

[5] P. C. Thomas, M. C. Malin, P. B. James, B. A. Cantor,
R. M. Williams, and P. Gierasch, “South polar resid-
ual cap of Mars: Features, stratigraphy, and changes,”
Icarus, vol. 174, no. 2, pp. 535–559, 2005.

[6] M. E. Schwamb, K.-M. Aye, G. Portyankina, C. J.
Hansen, C. Allen, S. Allen, F. J. C. III, S. Duca,
A. McMaster, and G. R. Miller, “Planet four: Terrains
– discovery of araneiforms outside of the south polar
layered deposits,” Icarus, vol. 308, no. 1, pp. 148–187,
2018.

[7] M. Balme and R. Greeley, “Dust devils on earth and
mars,” Reviews of Geophysics, vol. 44, no. 3, 2006.

[8] R. Greeley, P. L. Whelley, and L. D. V. Neakrase,
“Martian dust devils: Directions of movement inferred
from their tracks,” Geophysical Research Letters,
vol. 31, no. 24, 12 2004. [Online]. Available:
https://doi.org/10.1029/2004GL021599

[9] I. J. Daubar, A. S. McEwen, S. Byrne, M. R. Kennedy,
and B. Ivanov, “The current martian cratering rate,”
Icarus, vol. 225, no. 1, pp. 506–516, 2013.

[10] K. Di, Y. Liu, W. Hu, Z. Yue, and Z. Liu,
“Mars surface change detection from multi-temporal
orbital images,” IOP Conference Series: Earth
and Environmental Science, vol. 17, 2014. [Online].
Available: https://iopscience.iop.org/article/10.1088/
1755-1315/17/1/012015/meta

[11] W. Powell, “High-performance spaceflight computing
(HPSC) program overview,” in Space Computing and
Connected Enterprise Resiliency Conference, 2018.

[12] K. L. Wagstaff, J. Panetta, A. Ansar, R. Greeley,
M. Pendleton Hoffer, M. Bunte, and N. Schörghofer,
“Dynamic landmarking for surface feature identification
and change detection,” ACM Transactions on
Intelligent Systems and Technology, vol. 3, no. 3,
2012. [Online]. Available: http://doi.acm.org/10.1145/
2168752.2168763

[13] U. Bayram, G. Can, S. Duzgun, and N. Yalabik, “Eval-
uation of textural features for multispectral images,” in
Image and Signal Processing for Remote Sensing, 2011.

[14] D. R. Thompson, A. Allwood, D. Bekker, N. A. Cabrol,
T. Estlin, T. Fuchs, and K. L. Wagstaff, “Texturecam:
Autonomous image analysis for astrobiology survey,” in
43rd Lunar and Planetary Science Conference, 2012.

[15] S. Chien, J. Doubleday, D. R. Thompson, K. L.
Wagstaff, J. Bellardo, C. Francis, E. Baumgarten,
A. Williams, E. Yee, E. Stanton, and J. Piug-Suari, “On-
board autonomy on the Intelligent Payload EXperiment
CubeSat mission,” Journal of Aerospace Information
Systems, 2016.

[16] K. L. Wagstaff, A. Altinok, S. Chien, U. Rebbapragada,
S. Schaffer, D. R. Thompson, and D. Tran, “Cloud
filtering and novelty detection using onboard machine
learning for the eo-1 spacecraft,” in IJCAI 2017 Work-
shop on AI in the Oceans and Space, 2017.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-

10

Zooniverse.org
https://doi.org/10.1029/2004GL021599
https://iopscience.iop.org/article/10.1088/1755-1315/17/1/012015/meta
https://iopscience.iop.org/article/10.1088/1755-1315/17/1/012015/meta
http://doi.acm.org/10.1145/2168752.2168763
http://doi.acm.org/10.1145/2168752.2168763


genet classification with deep convolutional neural net-
works,” in Advances in Neural Information Processing
Systems, 2012.

[18] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient
processing of deep neural networks: A tutorial and
survey,” in Proceedings of the IEEE, vol. 105, 2017, pp.
2295–2329.

[19] E. S. Kite and D. P. Mayer, “Mars sedimentary rock
erosion rates constrained using crater counts, with appli-
cations to organic-matter preservation and to the global
dust cycle,” Icarus, vol. 286, pp. 212–222, 2017.

[20] S. J. Robbins and B. M. Hynek, “A new global database
of Mars impact craters ≥1 km: 1. database creation,
properties, and parameters,” Journal of Geophysical
Research: Planets, vol. 117, no. E5, 2012.

[21] A. E. Johnson and J. F. Montgomery, “Overview of
terrain relative navigation approaches for precise lunar
landing,” in 2008 IEEE Aerospace Conference. IEEE,
2008, pp. 1–10.

[22] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” International Journal of Computer
Vision, vol. 60, pp. 91–110, 2004.

[23] G. Doran, D. R. Thompson, and T. Estlin, “Precision
instrument targeting via image registration for the Mars
2020 rover,” in Proceedings of the International Joint
Conference on Artificial Intelligence, 2016.

[24] S. Byrne, C. M. Dundas, M. R. Kennedy, M. T. Mellon,
A. S. McEwen, S. C. Cull, I. J. Daubar, D. E. Shean,
K. D. Seelos, S. L. Murchie, B. A. Cantor, R. E.
Arvidson, K. S. Edgett, A. Reufer, N. Thomas, T. N.
Harrison, L. V. Posiolova, and F. P. Seelos, “Distribution
of mid-latitude ground ice on mars from new impact
craters,” Science, vol. 325, no. 5948, pp. 1674–1676,
2009.

[25] N. A. Teanby, “Predicted detection rates of regional-
scale meteorite impacts on mars with the insight short-
period seismometer,” Icarus, vol. 265, pp. 49–62, 2015.

[26] R. D. Lorenz, M. R. Balme, Z. Gu, H. Kahanpää,
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