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Area Coverage Planning Problem Recap
Choose observation footprints F to satisfy a target polygon P

• A (time, target, rotation) tuple defines 
footprint 𝑓𝑖

• A plan is a set of footprints 𝐹 = 𝑓!, 𝑓", … , 𝑓#
• Goal state 𝑔 𝑛 = 𝑃 ∈ ⋃$%!# 𝑓$
• Heuristic for distance to the goal state

• ℎ 𝑛 = area 𝑃 − area 𝑃 − ⋃!"#
$ 𝑓!

• Optimization formulations of the problem:
• Smallest number of footprints (time varying 

footprint size)
• Shortest duration (time varying slew cost 

between footprints, Shao et al. 2018)
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“Do the footprints really look like that?”
Chris Valicka, SPARK/ICAPS 2018, Delft, The Netherlands
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Uninterpolated Great 
Circles arc sides
(Shao et al. 2018)

Interpolated sides (22 points) 
(Mitchell et al. 2018)

Curved

Straight
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How could drawing a line affect a planner?
Neglecting curvature misinforms the distance to goal state heuristic

• Two-pass mosaic 
planner/scheduler

• Fast, local search for next 
footprint, guided by ℎ(𝑛)

• Slower second stage validation 
of overlap and coverage

• Second stage reschedules the 
missed fragments (suboptimal)
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Special Needs of Space Observational Coverage Planners
Things to consider when drawing footprint edges

Need to handle Why

Geometry on an arbitrary triaxial 
ellipsoid

First campaign for small bodies: 
Churyumov-Gerasimenko 67P (Mysen
2004, Jorda et al. 2016), small moons

Polygons that contain the North or 
South pole

Polar ice and interesting processes on the 
Moon (Spudis et al. 2013)  and Mars 
(Bibring et al. 2004) 

Polygon edges that cross the 
antimeridian

Poles, global mapping campaigns

Edges defined by the shape of the 
instrument

Oblique footprints of framing instruments 
(Shao et al. 2018, Mitchell et al. 2018)
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Existing Ways to Draw Polygon Edges
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• Great Circle: intersection of plane 
through origin and sphere 
(Hachenberger and Kettner 2019)

• Rhumb: line (spiral) of constant 
compass heading (Nunes, 1537)

• Equirectangular: 𝑥 ← lat, 𝑦 ← lon
(Chamberlain and Duquette 2007)

• We propose: Ellipse section/arc

Quiz: which projection is this 2D map?
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Problems with Existing Line types
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Great Circles Rhumb Equirectangular
Pole quirks * Yes Yes
Antimeridian quirks * Yes Yes
Triaxial ellipsoid error * Yes Yes
Polygon shape error 
over long distances**

Yes Yes Yes

*: If lat/lon is used, yes.  If vectors and planes are used, no.
**: Chamberlain and Duquette published a table relating distance 
to approximation error (2007).
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1. Target triaxial ellipsoid 
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Ellipse Sections for Polygon Edges

© 2019 California Institute of Technology.  ALL RIGHTS RESERVED.  United States Government Sponsorship 
acknowledged. 8

3. Observer’s camera 
frame 𝐶, whose x axis 
points toward the target

2. Observer position: 4𝐫(%)

4𝐫(%)

Figure 4: Large footprint with di↵erent edge types be-
tween 4 corners.

project look vectors at regular intervals along each edge
of the observer’s field of view. Consult a table3 to
choose a point spacing close enough to keep the ap-
proximation error within a reasonable bound. These
extra points add space and computational complexity
to subsequent polygon operations. There is a cheaper
alternative, which we define in the next two sections.

Nomenclature

Unless otherwise specified (/something), assume that the
position vector is relative to the origin of the target
body in target-fixed (B-frame) coordinates.

✏ Working floating point precision of a math op-
eration

d̂ The direction of some line

n̂ Surface normal of an ellipsoid-plane intersection

r̂obs Normalized (unit) vector of robs

b An argument (query) point to one of the poly-
gon/edge operations

c Position vector of a corner of the instrument’s
field of view

c1/obs Corner 1’s position relative to the observer

d0 Position vector of a known point on some line

m Position vector of an ellipse’s center

robs Observer’s position vector relative to the target
body’s origin

x A point on the surface of a target triaxial ellip-
soid

B The target body-fixed coordinate frame

C The camera coordinate frame

E Edge containment check frame

M Ellipsoid-plane intersection coordinate frame

� A half-cone angle about some vector

3
(Chamberlain and Duquette 2007) contains tables list-

ing the maximum allowed edge length before error exceeds

a critical bound.

✓ A clock angle within an ellipse

" Error
Mr Vector r expressed in M-frame coordinates
MRB Coordinate transformation matrix from B to M
A x semi-axis of a 2D ellipse

B y semi-axis of a 2D ellipse

e A polygon edge

hi Point-to-plane distance of point i

P A polygon on a triaxial ellipsoid

t Some parametric scalar (general)

Formulation

Handedness conventions

The operations in this paper take the approach that
clockwise point ordering defines an enclosed region,
with each arc’s normal vector pointing inside. Reverse
the order of the cross products if implementing in a
framework that uses the opposite convention.

Intersection plane ellipse arcs as edges

The surface of a target triaxial ellipsoid is the set of
points x = [ x y z ]

T
such that

x2

a2
+

y2

b2
+

z2

c2
= 1 (3)

The spacecraft’s position vector relative to the target
body is robs, which is computed by an ephemeris library.
If the sensor field of view is w radians wide and h radi-
ans high, the four corners of its field of view, in C-frame
(camera) coordinates and relative to the observer, are

Cci/obs =

"
1

± tan(w/2)
± tan(h/2)

#
(4)

Figure 5: Camera field of view, C-frame (red=x,
green=y, blue=z) relative to the observer

The coordinate transformation from the C frame to
the B frame is constructed by basis vectors as

BRC =
⇥ Bû Bv̂ Bŵ

⇤
(5)

4. Field of view corner vectors

𝑤, ℎ: angles in radians
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Camera frame transformation
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• Recall
• Planner chooses 𝑡, 4𝐫*+* , 𝜃
• 𝑡 determines 4𝐫(%)

• Construct camera frame to body frame transform using basis 
vectors in body-fixed coordinates:

Figure 4: Large footprint with di↵erent edge types be-
tween 4 corners.

project look vectors at regular intervals along each edge
of the observer’s field of view. Consult a table3 to
choose a point spacing close enough to keep the ap-
proximation error within a reasonable bound. These
extra points add space and computational complexity
to subsequent polygon operations. There is a cheaper
alternative, which we define in the next two sections.

Nomenclature

Unless otherwise specified (/something), assume that the
position vector is relative to the origin of the target
body in target-fixed (B-frame) coordinates.

✏ Working floating point precision of a math op-
eration

d̂ The direction of some line

n̂ Surface normal of an ellipsoid-plane intersection

r̂obs Normalized (unit) vector of robs

b An argument (query) point to one of the poly-
gon/edge operations

c Position vector of a corner of the instrument’s
field of view

c1/obs Corner 1’s position relative to the observer

d0 Position vector of a known point on some line

m Position vector of an ellipse’s center

robs Observer’s position vector relative to the target
body’s origin

x A point on the surface of a target triaxial ellip-
soid

B The target body-fixed coordinate frame

C The camera coordinate frame

E Edge containment check frame

M Ellipsoid-plane intersection coordinate frame

� A half-cone angle about some vector

3
(Chamberlain and Duquette 2007) contains tables list-

ing the maximum allowed edge length before error exceeds

a critical bound.

✓ A clock angle within an ellipse

" Error
Mr Vector r expressed in M-frame coordinates
MRB Coordinate transformation matrix from B to M
A x semi-axis of a 2D ellipse

B y semi-axis of a 2D ellipse

e A polygon edge

hi Point-to-plane distance of point i

P A polygon on a triaxial ellipsoid

t Some parametric scalar (general)

Formulation

Handedness conventions

The operations in this paper take the approach that
clockwise point ordering defines an enclosed region,
with each arc’s normal vector pointing inside. Reverse
the order of the cross products if implementing in a
framework that uses the opposite convention.

Intersection plane ellipse arcs as edges

The surface of a target triaxial ellipsoid is the set of
points x = [ x y z ]

T
such that

x2

a2
+

y2

b2
+

z2

c2
= 1 (3)

The spacecraft’s position vector relative to the target
body is robs, which is computed by an ephemeris library.
If the sensor field of view is w radians wide and h radi-
ans high, the four corners of its field of view, in C-frame
(camera) coordinates and relative to the observer, are

Cci/obs =

"
1

± tan(w/2)
± tan(h/2)

#
(4)

Figure 5: Camera field of view, C-frame (red=x,
green=y, blue=z) relative to the observer

The coordinate transformation from the C frame to
the B frame is constructed by basis vectors as

BRC =
⇥ Bû Bv̂ Bŵ

⇤
(5)

setting

û =
rtgt � robs
|rtgt � robs|

(6)

choosing the secondary alignment axis to achieve a de-
sired target footprint alignment and using a cross prod-
uct to compute the third.

If the four corners of the footprint intersect the target
body, the intersection point will satisfy both equation
3 and

ci = robs + tci/obs (7)

for some value of scalar t. We use the CSPICE function
surfpt c() for this calculation (Acton 1996).

The observer’s position and the surface intercepts of
two consecutive imager field of view corner points c1,
c2 form a plane that defines a field of view edge. This
plane’s surface normal n̂ may be computed as

c1/obs = c1 � robs (8)

c2/obs = c2 � robs (9)

n̂ =
c1/obs ⇥ c2/obs��c1/obs ⇥ c2/obs

�� (10)

The position vector x = [ x y z ]
T
of each point

on the edge e between c1 and c2 satisfies the target’s
ellipsoid surface equation 3 and is entirely in the plane
defined by c1 and n̂:

(x� c1) · n̂ = 0 (11)

Figure 6: 3D view of the observer, target and FOV edge

The intersection of this plane and the ellipsoid is an
ellipse with a solution of the form (Klein 2012)4

x = m+A cos ✓r̂+B sin ✓ŝ (12)

4
Klein’s paper has instructions for computing m, A,B, r̂

and ŝ. Van Wal and Scheeres present an abridged version

(Van wal and Scheeres 2016).

Figure 7: 2D view of the FOV intersection ellipse plane

The polygon edge e covers the domain ✓1  ✓  ✓2,
where ✓1 corresponds to c1 and ✓2 corresponds to c2.
We can compute ✓1 and ✓2 by defining a new coordinate
frame M centered at m and basis vectors { r̂ ŝ n̂ }.
The coordinate transformation from target body-fixed
frame B to M is

MRB =

2

4
r̂T

ŝT

n̂T

3

5 (13)

To transform some arbitrary vector b to M-frame co-
ordinates relative to the ellipse center,

Mb/m =
⇥MRB

⇤
(b�m) (14)

The arc edge e may be represented minimally as e =
(c1, c2, n̂).

Operations on intersection ellipse arcs
This section defines some primitive operations on ellipse
arc edges that are required by many polygon operation
algorithms. They are listed constructively, building on
the prior operations.

Operation 1 (Is point b 2 e?). Is some point b =

[ bx by bz ]
T
on the arc e = (m, n̂, c1, c2)?

If b 2 e, the relative position vector

b/m = b�m (15)

must be within the intersection plane and in a sector
bounded by lines (m, c1) and (m, c2)5. The in-plane
condition can be checked with the dot product

��b/m · n̂
�� < ✏ (16)

5
If b is actually on the surface (not inside or outside of

the target ellipsoid), b must also satisfy the triaxial ellip-

soid surface equation. This check is deliberately omitted so

that the operation handles sub-surface and irregular terrain

points.

8𝐮 is a consequence of time, target

Let 𝜃 determine 4𝐯 or 8𝐰 , use cross 
product to compute the last axis.
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Ellipsoid-plane Intersection for Camera FOV

• 𝐜! are surface intercepts of 
camera corners

• 𝑐!, 𝑐!"#, $𝐫$%& define an FOV edge 
plane, normal &𝐧

• Intersection of plane and ellipsoid 
has form (Klein 2012)
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setting

û =
rtgt � robs
|rtgt � robs|

(6)

choosing the secondary alignment axis to achieve a de-
sired target footprint alignment and using a cross prod-
uct to compute the third.

If the four corners of the footprint intersect the target
body, the intersection point will satisfy both equation
3 and

ci = robs + tci/obs (7)

for some value of scalar t. We use the CSPICE function
surfpt c() for this calculation (Acton 1996).

The observer’s position and the surface intercepts of
two consecutive imager field of view corner points c1,
c2 form a plane that defines a field of view edge. This
plane’s surface normal n̂ may be computed as

c1/obs = c1 � robs (8)

c2/obs = c2 � robs (9)

n̂ =
c1/obs ⇥ c2/obs��c1/obs ⇥ c2/obs

�� (10)

The position vector x = [ x y z ]
T
of each point

on the edge e between c1 and c2 satisfies the target’s
ellipsoid surface equation 3 and is entirely in the plane
defined by c1 and n̂:

(x� c1) · n̂ = 0 (11)

Figure 6: 3D view of the observer, target and FOV edge

The intersection of this plane and the ellipsoid is an
ellipse with a solution of the form (Klein 2012)4

x = m+A cos ✓r̂+B sin ✓ŝ (12)

4
Klein’s paper has instructions for computing m, A,B, r̂

and ŝ. Van Wal and Scheeres present an abridged version

(Van wal and Scheeres 2016).

Figure 7: 2D view of the FOV intersection ellipse plane

The polygon edge e covers the domain ✓1  ✓  ✓2,
where ✓1 corresponds to c1 and ✓2 corresponds to c2.
We can compute ✓1 and ✓2 by defining a new coordinate
frame M centered at m and basis vectors { r̂ ŝ n̂ }.
The coordinate transformation from target body-fixed
frame B to M is

MRB =

2

4
r̂T

ŝT

n̂T

3

5 (13)

To transform some arbitrary vector b to M-frame co-
ordinates relative to the ellipse center,

Mb/m =
⇥MRB

⇤
(b�m) (14)

The arc edge e may be represented minimally as e =
(c1, c2, n̂).

Operations on intersection ellipse arcs
This section defines some primitive operations on ellipse
arc edges that are required by many polygon operation
algorithms. They are listed constructively, building on
the prior operations.

Operation 1 (Is point b 2 e?). Is some point b =

[ bx by bz ]
T
on the arc e = (m, n̂, c1, c2)?

If b 2 e, the relative position vector

b/m = b�m (15)

must be within the intersection plane and in a sector
bounded by lines (m, c1) and (m, c2)5. The in-plane
condition can be checked with the dot product

��b/m · n̂
�� < ✏ (16)

5
If b is actually on the surface (not inside or outside of

the target ellipsoid), b must also satisfy the triaxial ellip-

soid surface equation. This check is deliberately omitted so

that the operation handles sub-surface and irregular terrain

points.
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An Ellipse Arc Edge

• An FOV edge is now defined by:
• In the ellipse plane (8𝐧,𝐦)
• Clock angle domain 𝜃,, 𝜃-

© 2019 California Institute of Technology.  ALL RIGHTS RESERVED.  United States Government Sponsorship 
acknowledged. 11



jpl.nasa.gov

Elliptic Edge Polygon Operations Defined in the Paper

• Compute polygon bounding cone
• Point in convex polygon check

Edge operations Polygon operations

© 2019 California Institute of Technology.  ALL RIGHTS RESERVED.  United States Government Sponsorship 
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• Is point on edge?
• Are arcs coplanar?
• Find intersection of arcs
• Split an arc
• Find extreme point on arc 

(furthest from bounding cone 
center)



jpl.nasa.gov

Experiment: When Does Edge Type Matter?
Methodology
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• Two observer use cases
• Compute footprints and interpolate edges with each edge 

type (Great Circles, Rhumb, Equirectangular, Elliptic)
• Sweep off-nadir angles until footprints don’t completely 

intersect the target body
• Treat elliptic as truth (t) and compute a fractional polygon 

disagreement error for the other three (a)

Methodology

We hypothesize that the choice of polygon line is impor-
tant for large, oblique footprints of distant observers,
but not important for small footprints of closer ob-
servers. A computational experiment will test this hy-
pothesis for two mission cases.

The first mission case (near/narrow) is modeled on
the Earth-observing Planet Labs (formerly Skybox,
Terra Bella) SkySat-1 in a Low Earth Orbit (LEO). Its
field of view is derived from nominal scene size at refer-
ence orbit altitude in the Planet Image Product Spec-
ifications (Planet Labs, Inc. 2018). The nadir altitude
is based on a propagation of the SkySat-1 ephemeris
from the STK Data Federate (Analytic Graphics, Inc.
2019).

The second case examines a smaller, more distant
body, with a larger observer field of view. The Mars
Reconnaissance Orbiter (MRO) aerobraking phase (Se-
menov and You 2006) is used with the 6� MRO context
camera (Malin Space Systems, Inc. 2005) and a nadir
footprint that is 17% of the Mars ellipsoid’s smallest
semiaxis. This is similar to the closest approach in the
Rosetta OSIRIS mapping campaign (Jorda et al. 2016),
where a 9 km altitude image with the 2.2� square field of
view NAC has a footprint approximately 16% comet’s
smallest approximating ellipsoid6 semiaxis.

Table 1: Observer footprint configurations

Near/Narrow Far/Wide

Spacecraft SkySat-1 MRO
Body observed Earth Mars
Trajectory LEO Aerobraking
Nadir Altitude 578 km 8992 km
Field of view 0.37� ⇥ 0.15� 6� ⇥ 6�

Rhumb lines, equirectangular lines and great cir-
cles arcs as approximations of the true shape (an
ellipsoid-plane intersection arc). Error of this approx-
imation is computed as a fractional disagreement "
between the truth polygon Pt and the approximation
(rhumb/equirectangular/great circle) polygon Pa:

" =
area (Pa [ Pt)� area (Pa \ Pt)

area (Pt)
(50)

Large " is a poor approximation and " = 0 is a perfect
approximation.

Polygon area is computed using the great circles poly-
gon algorithm in (Chamberlain and Duquette 2007).
All footprint polygons will be interpolated with 100
points per side according to the edge type under test
and stored as great circles polygons. Polygon intersec-
tions and unions will use the Margalit and Knott al-

6
(Jorda et al. 2016) provides an approximating triaxial

ellipsoid, but notes that 67B’s structure is more properly

modeled as bilobate.

gorithm (Margalit and Knott 1989), adapted for great
circle arcs.

Results

Impact of the footprint polygon line type
Figure 8 shows that for a low altitude observer with a
small footprint, the approximation error of the footprint
is small (less than 1%). In general, error increases as
o↵-nadir angle increases.

Figure 8: Error caused by non-elliptic edges for a low
altitude observer with a small footprint (SkySat-1)

When the observer was further away and had a larger
field of view, the error grew to almost 10% (figure 9).

Figure 9: Error caused by non-elliptic edges for a larger
footprint further from the target body (MRO/CTX)

Discussion

Does the type of edge line matter?
Sometimes. For commercial imagery operators in Low
Earth Orbit (close relative to the target body’s radius)
with small fields of view, choice of edge type doesn’t
matter. All of the edge types in the Earth LEO mission
case had less than 1% approximation error, even up to
55� o↵-nadir angle.

When the observer is far from the target or has a large
field of view relative to the target, yes, the choice of
line can matter. The edge type was more significant as
o↵ nadir angle increased. Even at 10% error, however,
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Experiment
Observer Cases

• A small FOV relative to the target is
• Near: altitude small relative to target body radii
• Narrow: small angular field of view

• Converse for a large FOV relative to the target
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Methodology

We hypothesize that the choice of polygon line is impor-
tant for large, oblique footprints of distant observers,
but not important for small footprints of closer ob-
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pothesis for two mission cases.

The first mission case (near/narrow) is modeled on
the Earth-observing Planet Labs (formerly Skybox,
Terra Bella) SkySat-1 in a Low Earth Orbit (LEO). Its
field of view is derived from nominal scene size at refer-
ence orbit altitude in the Planet Image Product Spec-
ifications (Planet Labs, Inc. 2018). The nadir altitude
is based on a propagation of the SkySat-1 ephemeris
from the STK Data Federate (Analytic Graphics, Inc.
2019).

The second case examines a smaller, more distant
body, with a larger observer field of view. The Mars
Reconnaissance Orbiter (MRO) aerobraking phase (Se-
menov and You 2006) is used with the 6� MRO context
camera (Malin Space Systems, Inc. 2005) and a nadir
footprint that is 17% of the Mars ellipsoid’s smallest
semiaxis. This is similar to the closest approach in the
Rosetta OSIRIS mapping campaign (Jorda et al. 2016),
where a 9 km altitude image with the 2.2� square field of
view NAC has a footprint approximately 16% comet’s
smallest approximating ellipsoid6 semiaxis.

Table 1: Observer footprint configurations

Near/Narrow Far/Wide

Spacecraft SkySat-1 MRO
Body observed Earth Mars
Trajectory LEO Aerobraking
Nadir Altitude 578 km 8992 km
Field of view 0.37� ⇥ 0.15� 6� ⇥ 6�

Rhumb lines, equirectangular lines and great cir-
cles arcs as approximations of the true shape (an
ellipsoid-plane intersection arc). Error of this approx-
imation is computed as a fractional disagreement "
between the truth polygon Pt and the approximation
(rhumb/equirectangular/great circle) polygon Pa:

" =
area (Pa [ Pt)� area (Pa \ Pt)

area (Pt)
(50)

Large " is a poor approximation and " = 0 is a perfect
approximation.

Polygon area is computed using the great circles poly-
gon algorithm in (Chamberlain and Duquette 2007).
All footprint polygons will be interpolated with 100
points per side according to the edge type under test
and stored as great circles polygons. Polygon intersec-
tions and unions will use the Margalit and Knott al-

6
(Jorda et al. 2016) provides an approximating triaxial

ellipsoid, but notes that 67B’s structure is more properly

modeled as bilobate.

gorithm (Margalit and Knott 1989), adapted for great
circle arcs.

Results

Impact of the footprint polygon line type
Figure 8 shows that for a low altitude observer with a
small footprint, the approximation error of the footprint
is small (less than 1%). In general, error increases as
o↵-nadir angle increases.

Figure 8: Error caused by non-elliptic edges for a low
altitude observer with a small footprint (SkySat-1)

When the observer was further away and had a larger
field of view, the error grew to almost 10% (figure 9).

Figure 9: Error caused by non-elliptic edges for a larger
footprint further from the target body (MRO/CTX)

Discussion

Does the type of edge line matter?
Sometimes. For commercial imagery operators in Low
Earth Orbit (close relative to the target body’s radius)
with small fields of view, choice of edge type doesn’t
matter. All of the edge types in the Earth LEO mission
case had less than 1% approximation error, even up to
55� o↵-nadir angle.

When the observer is far from the target or has a large
field of view relative to the target, yes, the choice of
line can matter. The edge type was more significant as
o↵ nadir angle increased. Even at 10% error, however,
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Experiment
Results: Approximation Error

Near/Narrow – Earth LEO Far/Wide – MRO Aerobraking
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Negligible. Non-negligible.
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Experiment
Results: Runtime Comparison (Near/Narrow)

• Great circles footprints
• 24 points/footprint
• Implementation: CLASP 

(Knight and Chien 2006)
• Bounding box short-circuit

• Elliptic edge polygons are
• ~5x faster to construct
• ~2x faster to query
• Less variable in runtime
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Elliptic Edge Great Circles

Mean Std. Dev. Mean Std. Dev.

Construct 56.3 19.7 275.8 41.8

Containment 
check, inside 0.5 0.5 0.9 0.5

Containment 
check, outside 0.2 0.4 0.4 2.4

Units: 𝜇sec
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Discussion

• Wider applicability
• Elliptic edge operations may also be used for Great 

Circles arcs to avoid pole/antimeridian problems.
• Suitable for framing instruments, but not pushbrooms

• Unexpected round trip error converting ellipse-clock 
angle to body fixed point (workaround in the paper)

• Future work: need a point-in-concave-polygon check 
before planners use elliptic edge polygons
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Conclusions
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• Elliptic Edge Polygons preserve footprint curvature without 
adding intermediate points to the edge

• Footprint curvature is only a concern when the field of view 
is large relative to the target body

• Fly-by, small body mapping, etc.
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