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Overview

• ECOSTRESS Mission 
• CLASP Scheduling System
• Scheduling Challenges

1. Scheduling ring buffer resets added additional complexity to 
scheduling

2. Robustness to uncertainty in along track orbit prediction 
3. Scheduling campaigns with extent beyond a single planning cycle
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ECOSTRESS 

• ECOSystem Thermal Radiometer 
Experiment on Space Station

• Studies the temperature of plants 
to determine how they use water 

• Launched to the ISS in July 2018
• Installed on the Japanese 

Experiment Module – Exposed 
Facility 

• Planned mission end Summer 
2019  
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ECOSTRESS mounted on the JEM-EF

SpaceX CRS-15 launch on June 29, 2018



ECOSTRESS 
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Targets include key biomes (polygons), 
calibration/validation sites, cities, and volcanoes 

(points)

• Nadir pointed instrument 
• Campaigns have different 

illumination constraints –
dependent on angle of 
sun at target location



ECOSTRESS 
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ECOSTRESS data showing temperatures throughout Los 
Angeles at different times of day 



CLASP 

• Compressed Large-scale Activity Scheduler 
and Planner (Knight and Chien 2006)

• Scheduler for space-based instruments that can 
be modelled as pushbrooms

• Uses by ECOSTRESS
• Evaluating designs of the overall science 

campaign implementation prior to launch
• Generating schedules (and therefore command 

sequences) for operations 
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Direction of flight

Direction of scan

One scan 

Pushbroom Imager 



Ring Buffer Issue
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• MSU (Mass Storage Unit) 
is a Ring Buffer

• Read pointer does not 
properly advance over 
discontinuity – continually 
reads from last memory 
address

• Time that read pointer 
reaches discontinuity is 
probabilistic due to data-
dependent compression 
rates

• Pointers need to be 
commanded to a reset

• Sets both read and write 
pointers to start, but also 
loses all data stored 
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Pointer
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DATA 
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Ring Buffer Solution

• Instrument firmware update to fix ring buffer more risky than 
ground-based scheduling solution

• Schedule pointer reset commands in command sequences at 
appropriate times to avoid the previous issue

• Need to command a reset before write pointer wraps around 
• Need all data to be downlinked by the time of a reset command
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Scheduling Ring Buffer Resets – First 
Pass
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Memory 
Profile w. 
High priority 
Data

• Run once with high priority targets
• Choose reset points when amount of data onboard is low 
• Trade-off: (a) fewer resets to avoid disrupting operations (constraining 

schedule) with (b) making sure a reset occurs before the end of the buffer
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Scheduling Ring Buffer Resets – Second 
Pass
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Fill in low 
priority data 

• Scheduler runs again with high and low priority targets, enforcing the buffer 
must be empty at previously determined reset points

• Algorithm tries to minimally affect the amount of high priority observations that 
are scheduled 
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Ring Buffer Resets – Results

• Blue: Resets only at week 
boundaries

• Orange: Additional resets 
to correct ring buffer 
issue 

• ~2% difference in 
covered area  
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Uncertain Ephemeris 

• Have access to predictions about spacecraft location, but 
spacecraft can drift from this due to drag from Low Earth Orbit

• If a target is viewable near the start or end of an observation, it 
is possible this drift could cause the target to not be observed

• ECOSTRESS has fixed observation length (52 seconds) to 
make data processing simpler 

• Planning horizon broken up into to 52 second periods
• Observations were chosen from these times 
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Uncertain Ephemeris – Initial Solution

• Because observations had to be 52 seconds long, 26 seconds 
of time were added before/after every contiguous set of 
observations

• This caused the minimum acquisition length to be 104 seconds
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52 seconds 52 seconds 26 seconds26 seconds 52 seconds52 seconds

Originally scheduled scene Add extra time Two scenes result 
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Uncertain Ephemeris – Updated Solution 

• Needed a solution that still added extra time to make sure 
scheduled targets are observed, but did not waste data volume

• Break planning horizon into periods of time (one second), and 
build the observations from there accounting for some amount 
of uncertainty in the position and the fixed observation size 
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Uncertain Ephemeris – Creating an 
Observation
• Have two padding functions pa and pb that return the necessary 

amount of padding time that should be added after/before a 
target is visible to ensure the observation will cover the target

• The observation for a target visible in the time (t, t+1) will have
• lst (latest start time) = t - pb
• eet (earliest end time) = t + pa
• st (start time)
• et (end time)

• st and et have three possible values by making the observation 
have the latest possible start, the earliest start, or be centered 
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Uncertain Ephemeris – Merging 
Observations 
• Newly created observations may directly overlap with previous 

observations or violate the minimum time between 
observations, so they need to be merged 
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Merging observation x with neighbor observation n1
results in merged observation x’, which has

• x’.eet = max(x.eet, n1.eet)
• x’.lst = min(x.lst, n1.lst)

x’.st and x’.et are given values that results in x’ 
having a length of the smallest possible multiple of 
52 second



Uncertain Ephemeris – Results 
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Schedule similar numbers 
of 52 second observations 

The number of gridpoints covered 
increases by 30% between the two 

methods 



Fulfilling Long-Term Campaigns with 
Changing Information
• A background ”global map” was added as the lowest priority 

campaign
• Updated ephemeris (prediction of spacecraft location) is provided 

weekly, and the instrument is commanded weekly 
• Two weeks worth of commands are uploaded in case a new schedule cannot 

be uploaded the next week
• Global map takes four weeks to acquire – longer than a single planning 

horizon 
• Takes this long due to the ISS orbit, illumination constraints, and data volume 

constraints

• Need to know what regions of the global map have already been 
observed in current cycle when determining which regions to 
schedule observations of
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Receiving Prior Schedule as Input

• CLASP was adapted to be able to receive a previous schedule 
as input, and account for previous observations when 
scheduling future observations

• Horizon is entire period over which is considered to have 
activities satisfying campaigns (hst, het)

• Planning horizon is period over which new activities can be 
schedule (phst, phet)
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Past

Score everything

FutureCurrent Current
hst phst phet het

Scope the solver (scheduler) to modify 
(phst, phet) ⊆ (hst,het)
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Future Work 
• Currently require buffer to be empty at schedule hand-off times

• Could account for predictions of buffer state when creating new 
schedule

• Planned observations may not be considered successful due to 
cloud cover or downlink malfunctions 

• Could take out these unsuccessful observations from input schedule so 
these targets are re-scheduled 

• Padding function just returns a constant based on the 
upperbound of the ephemeris error, but it could be time-
dependent. The farther out the time the prediction was supplied, 
the more error there could be.
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Related Work 
• Uses of CLASP in other missions:

• On-orbit scheduling of the IPEX CubeSat (Chien et al. 2015)
• Long-term mission studies for Europa Clipper, JUICE (Troesch, Chien, 

and Ferguson 2017), and NISAR (Doubleday and Knight 2014)
• Scheduling for OCO-3 (Moy et al. 2019)
• Prototype for early stage mission planning for the THEMIS instrument 

on Mars Odyssey (Rabideau et al. 2010)
• Long-term ARIEL mission study (Roussel et al. 2017) 
• Sliding window scheduling approach for scheduling Earth 

observations (Lemaître et al. 2002; Aldinger et al. 2013; 
Lewellen et al. 2017) 
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Conclusion 

• Issue with the instrument ring buffer required additional 
scheduling constraints, and scheduling a new type of activity 

• Issue with error in ephemeris required new approach to 
scheduling observations 

• Fulfilling long-term campaigns with changing information 
required adapting CLASP to consider past observations 
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