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Overview

* Motivation: Why are we making this simulation?

— Simulation is the only end-to-end representation of EDL other
than actual EDL. We can't test end-to-end EDL

— EDL will have more than one complete end-to-end simulation
(Mars program requirement)

. g(())ZSOTZ (LaRC) provides official project performance results for Mars

« DSENDS is used for targeting and independent V&V of POST results
 Agenda
— Overview of MSL EDL and DSENDS models required
— MSL Reconstruction and comparison with expected results
— Summary and conclusions
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What is DSENDS?
A deployment of the DARTS Lab’s DARTS/Dshell multi-mission simulation toolkit

* A high-fidelity, physics-based flight-dynamics system simulation
’g)ol In gjse for EDL (e.g. M2020) and Proximity Operations (e.g.
omet).

« Simulates the multi-body spacecraft’s position, attitude,
articulation and body flexibility states and the interactions with
gravity, atmospheres, terrain, and on-board s/c devices in

response to onboard flight-software directed sensing and
control actions.

« DSENDS is used for end-to-end simulation and performance
evaluation for flight missions, proposal development, internal
R&D efforts, mission studies, algorithm & real-time testbeds,
EDL targeting and mission operations.
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Validation Hierarchies
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Reconstruction Description

« MSL day-of-landing setup used. The best
prediction before landing of the expected result.

— 8000-sample Monte Carlo used to compute uncertainty
on metrics of interest. Over 100 specific metrics
computed.

« Based on the MSL reconstruction work
— Reconstructed values for metrics of interest computed

— Explanation of variations relative to expectations
gathered, where applicable

A subset of those metrics is shown here.
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Reconstruction Summary
How does the reconstruction compare to the expected values?

» Values from various MSL reconstruction references (see list at the
end)

* Entry

— Higher atmospheric density at guidance start

— Tail wind from heading alignment start through parachute deploy
« Parachute

— Deployment and inflation slightly faster than predicted

— Aeroshell angular rate/accel predicted well within reasonable bounds
« GNC

— Radar solution at significantly higher altitude than predicted
— Lower than expected TD velocity
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Reconstruction Summary

Prebank Error deg 0.05 2.67 8.72 8.595 3.0190*
Downrange at Heading Alignment km 76.311 81.452 86.17 83.242 0.7800
Downrange at SUFR km 8.249 14.233 20.388 12.819 -0.5330
Downrange at Parachute Deploy km 1.534 7.466 13.658 4.966 -0.9470
Peak Capsule Rates on Chute deg/s 23.2 47.6 88.3 69.4 1.0780
Peak Capsule Ang. Accel on Chute deg/s"2 165 470 1042 625 0.5800
Altitude AGL at TDS Nav Init km 5.695 6.729 7.454 8.346 4.1640
Time in GN&C Mode 21 (Timeline Margin) s 31.375 43.91 56.192 62.5 3.4910
Vertical Velocity at Touchdown m/s -0.82 -0.75 -0.67 -0.6 -1.4650
Downrange at Touchdown km -6.564 -0.038 6.597 -2.329 -0.7830
Landing Accuracy km 0.274 2.666 7.348 2.385 1.1390%

*Note: One-sided distributions are compared to standard Rayleigh quantiles
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Downrange Distance to Target

Lower than expected deceleration from heading alignment to parachute deploy
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*TZERO is at entry interface minus 9 mins

12 July 2019 IPPW-2019

At start of heading alignment
reconstructed downrange
distance to target > prediction

Lower supersonic deceleration
between HA and parachute
deploy = downrange distance
to target decreases faster than
prediction

Touchdown 2.329 km
downrange of target



On-Parachute Dynamics
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 MSL reconstruction provided
additional data point for model
parameter tuning for M2020

Max. capsule angular rates &
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Summary

« ADSENDS end-to-end simulation of EDL has been
developed for Mars 2020.

« This simulation has been verified by comparison with
MSL reconstruction

e Future Work

— Update the setup as necessary to match the latest Mars
2020 models and configuration.
« Final model integration and test is nearly complete
— Perform analysis as needed for simulation V&V

— Perform additional analyses as requested by Mars 2020.
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DARTS/Dshell Simulation
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EDL Overview — Mars 2020 Models
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TDS Performance

Gaussian Quantile

Vehicle ready to process TDS
data approx. 5 sec after
heatshield sep.

Radar solution obtained at
significantly higher altitudes than
predicted

TDS level 1 model was
intentionally conservative

(Slant range measuments > 7km
declared invalid)



Touchdown Velocity
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Rover vertical velocity at
touchdown was significantly
lower than expected

Caused by a 450 ug error in
estimating the local gravity at
Gale crater

Updated local gravity model for
Mars2020



Reconstruction summary

« For MSL, how does the reconstruction compare to the expected values?
— Base this on the various reconstruction papers

* Notes from papers
— Gavin’s EG paper
* Higher atmos density at guidance start
+ Tail wind late in guided entry
* Long SUFR-chute deploy time delta
— 0.5km downrange due to atmosphere/aero/winds
— Supersonic atmos data not very good (MEDLI not calibrated here), also adds uncertainty to aero
recon
— Chute paper
+ Deployment and inflation slightly faster than predicted
* Aeroshell angular rate/accel predicted well within reasonable bounds
— TDS: measurement start at significantly higher altitude than predicted, in line with HS separation and
clear vs the modeled max height constraint based on requirements
— PD an d prop/thruster papers
* Higher-than-expected thrust from MLEs
— Steltzner overview paper
* Lower than expected TD velocity
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