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GRACE and GRACE Follow-On
• Gravity Recovery and Climate Experiment 

GRACE (since 2002 to 2017): 
• NASA/German Research Centre for Geosciences (GFZ) partnership 
• 220 km separation measurement of 2 spacecraft by dual microwave links
• Spacecraft separation + location (GPS) yield orbit

Orbit determines gravity map
• Gravity map evolution over months and years 

Insight into earth systems & effects of climate change
Really impressive science!

• GRACE Follow-On (Launched May 22, 2018) will continue science
• Microwave Ranging Instrument (MWI) and Accelerometer similar to GRACE
• Tech-Demo for All-Optical GRACE : Laser Ranging Interferometer (LRI)

First inter-spacecraft interferometer 
• Long running development Astrophysics (LISA)

and Earth Science (GRACE 2) funding
http://www.csr.utexas.edu/grace/
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The GRACE Follow-On Laser Ranging Interferometer (LRI) is a partnership between the US and Germany
US: Stabilized laser and Metrology
Germany: Optics/opto-electronics
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Laser Ranging Interferometer
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US contribution
Laser (LAS) – source of light
Cavity (CAV) – stabilizes wavelength of light
Laser Ranging Processor (LRP) – Phasemeter, laser and steering 

mirror control, produces science data

German Contribution
Optical Bench Assembly (OBA) – routes and points the beam
Optical Bench Electronics (OBE) – steering mirror & detector drivers
Triple Mirror Assembly (TMA) – routes the beam around MWI
Baffles (BAF)
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LRI Flight Components

Laser

Phasemeter
OBA

Cables not shown (complete):
LRP-CAV: power, coax (x2)
LRP-LAS: power, cmd/tel
LRP-USO: coax (x2)
OBE-LRP: coax (x4), cmd/tel
OBE-OBA: Tel, power

Triple mirror assembly
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• The Laser Ranging Processor implements the LISA phase tracking 
and frequency control algorithms, including:

• Phase tracking 

• Differential wavefront sensing (and control)

• Laser Phase Locking

• Laser frequency stabilization

• Has only 4 input channels (vs 34 for LISA)

• Relaxed precision requirement, but ~ LISA performance
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LRI Phasemeter

LRP developed at JPL, based on the LISA Phasemeter
Laser Ranging Processor Flight model

JPL

Simulated Laser
Frequency Noise

Residual error

f1
f2

fbeat = f1 - f2
The phasemeter measures the science signal as a 
mHz phase modulation on a MHz beat signal.
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LRI measures gravity
Filtered interferometer signal correlates with topography.

https://gracefo.jpl.nasa.gov/news/138/first-laser-light-for-grace-follow-on/

https://gracefo.jpl.nasa.gov/news/138/first-laser-light-for-grace-follow-on/
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LRI performance

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
0.1

1
10

100
1000

104
105
106

10-5 10-4 10-3 10-2 0.1 1

100pm
1nm
10nm
100nm
1µm

or
bi

ta
l p

er
io

d

gravity signal

laser frequency noise

2 µm/sqrt(Hz)80 nm/sqrt(Hz)
requirement

ra
ng

in
g 

si
gn

al
 +

 n
oi

se
, e

qu
iv

. h
al

f-
ro

un
dt

rip
 [m

/s
qr

t(H
z)

]

Frequency [Hz]

LRI ranging raw data with gravity signal, non-grav. forces, all noises
10 day segment ending July 2, 2018 (Linear spectral density)



NASA Technology Development Roadmap for a Future Gravitational-Wave Mission

LRI design based on LISA technology
and capabilities. 
• Designed by LISA scientists and technologists (NASA 

and Germany)
• LRI top level precision relaxed
• Tighter laser stability requirement

Similar: 
• Doppler shift and IF signal
• Received optical power
• mHz-band science signal frequency
• Link architecture:  stabilized master and offset phase-

locked slave
• Photoreceiver properties

Both LRI and LISA require: 
• Low light power tracking
• Differential wavefront sensing
• 5 degree of freedom acquisition
LRI is providing technology demonstration for LISA and 
represents a huge step towards LISA

LRI is demonstrating the first inter-spacecraft 
interferometer 
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Similarities with LISA



Following launch there were 5 degrees of freedom that had to be 
resolved:

• ±3 mrad in pitch/yaw pointing of both spacecraft
• ± 160 MHz laser frequency uncertainty

The goal of link acquisition is to get beatnotes on both detectors 
(pointing within ±100 µrad in pitch and yaw) with frequencies 
within 2 – 18 MHz bandwidth that the phasemeters are able to 
track.

To do this:

1. Perform initial link acquisition scans, recording pointing and 
laser frequency when a beatnote is seen on a detector

2. [Offline] Use data collected during initial acquisition scans to 
calculate line-of-sight offset and laser frequency offset. 
Upload these parameters to satellites.

3. Auto-acquisition (smaller scan) optimizes pointing, 
transitioning into science mode once a beatnote is detected. 
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Acquiring the optical link
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Initial link acquisition scans
Master and Transponder: The master satellite locks to cavity 
to frequency stabilize its laser before starting the initial 
acquisition scan. The master performs a slow hexagonal scan 
and the transponder performs a fast Lissajous scan while 
simultaneously sweeping its laser frequency

There is no dedicated acquisition sensor, link acquisition uses 
the same hardware that is used in the science measurement. 
An FFT is used to detect when a beatnote is within band. If 
the received power is above threshold the current 
parameters are recorded.

Role Scan type Scan rate Frequency sweep 
[Hz/s]

Master Hexagonal (Discrete) 1.8 [pts/s] N/A

Transponder Lissajous (Continuous) 100 [Hz], 2 [Hz] 10.5 kHz/s



Over the nine hour initial acquisition scan the two GRACE Follow-On satellites recorded the 
laser frequency, mirror Pitch and Yaw and the amplitude each time a beatnote was detected 
that was within the 2-18 MHz bandwidth and above threshold. This data was downlinked for 
analysis:

Line-of-sight offsets were determined by fitting gaussian surfaces to the downlinked data
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Initial link acquisition scans



• The line-of-sight and laser frequency offsets were determined on-ground for both spacecraft and 
uploaded to the satellites. The LRI then automatically optimized its link using smaller (300 µrad vs 3 
mrad) scans

• The optimization scan stops* once a beatnote has been detected on the satellite. Differential 
Wavefront Sensing is then enabled to feedback in real time to the pitch and yaw of the steering mirror 
on both satellites to maintain the optical link

*delays are built into the auto-acquisition algorithm to ensure doppler shifts between satellites don’t 
mean one satellite has a beatnote within band, while the other satellite doesn’t

The autonomous acquisition scans are used any time the link is lost or disabled to reacquire the link
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Optimizing the optical link 

Simulation: Comparing performance of auto-acquisition algorithm without and with extra delay

FAILS TO ACQUIRE LINK ACQUIRES LINK



Acquisition on LISA is more complicated than in LRI:

• More arms to align/lasers to overlap in frequency

• Longer time-of-flight delay along arms
• (potentially) Slower point ahead actuation

Two strategies for acquisition have previously been considered:
• Defocusing the transmitted beam [Maghami, 2005] 
• Spiral scan [Cirillo, 2009]

In both schemes a dedicated (CCD) is used as an acquisition sensor. Since it is intensity based, light on the 
receiving spacecraft is turned off. Consequently, once a link has been aligned in one direction along an 
arm, the laser is disabled and the laser at the other end is enabled. The spacecraft attitude control system 
is tasked with maintaining pointing while the link is deactivated.

GR 22/Amaldi 13 14

Acquisition in LISA

Acquisition schemes previously studied for LISA

Maghami, P. G, et al. (2005). An acquisition control for the laser interferometer space antenna. Classical and Quantum Gravity, 22(10).
Cirillo, F, et al. (2009). Control system design for the constellation acquisition phase of the LISA mission. Journal of Physics: Conference Series (Vol. 154, No. 1).



Could an LRI-like acquisition scheme be used in LISA?

1. Would we want to?

2. Could it work? Would need need to address:
• 8.3 [s] vs 0.7 [ms] optical light time delay
• Is pointing control achieved using Moving Optical Subassemblies (MOSA) or by changing 

spacecraft orientation?
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LRI acquisition on LISA?

Advantages?
• Don’t need to turn off lasers during acquisition 

(no relying on attitude control)
• Avoid the need for dedicated acquisition sensors
• Acquisition and reacquisition use same algorithm

Disadvantages?
• Potentially more time to acquire link. A dedicated 

acquisition sensor disentangles degrees-of-
freedom that we need to solve for

Initial (commissioning) spatial and 
laser frequency scans used to

search for beatnotes

[Offline] Determine line-of-sight
pointing and laser frequency 

offsets

Perform smaller, optimization 
scans to get beatnotes on all 

detectors



• GRACE Follow-On Laser Ranging Interferometer, the first inter-spacecraft laser 
interferometer has been successfully operating since powering up in June, 2018.

• High frequency performance of nm/√Hz limited by thermal stability of cavity. 
Characterization of Low frequency performance is ongoing.

• LRI instrument design and many technology elements have heritage in LISA development

• LRI optical link acquisition searches for a heterodyne beatnote signal, employing the 
same photodetectors and signal processing hardware as the science measurement

• LISA acquisition is more complicated because of larger number of links; longer light 
delays; and slower point ahead actuation. Looking at whether an LRI-like acquisition 
scheme would be advantageous
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Conclusion


