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Abstract. The NASA roadmap for 2020 and beyond includes several
key technologies which will have a game-changing impact on planetary
exploration. They are: High Performance Spaceflight Computing (HPSC)
Delay Tolerant Networking (DTN) and a trend toward small, co-dependent
robots included in flagship missions (MarCO, PUFFER, and Mars Heli).
Taken together, these imply an increasing amount of communication and
computing heterogeneity on Mars in coming decades. As such, we study
the concept of Mars on-site shared analysis, information, and communi-
cation (MOSAIC) for Mars exploration. In this distributed computation
regime, the network of heterogeneous robots uses communication to lend
computation assistance when required, directing resources to where it is
needed. The key algorithmic problem associated with MOSAIC networks
is simultaneous scheduling of computation, communication, and caching
of data, which we illustrate using two Mars exploration scenarios.

1 Introduction

Three trends are poised to significantly change mission concepts for future NASA
planetary exploration. While previous missions involved single robots with lim-
ited processing capability, the combination of new networking technology, ad-
vanced computation hardware, and small-bodied robot designs is making multi-
robot missions more attractive.

In an effort to modernize the flight computing hardware available for NASA
missions, the High Performance Spaceflight Computing (HPSC) initiative was
announced in 2013 [2,13,10]. Unlike the current generation of computing, this
program aims to keep NASA computing technologies at most one generation
behind commercial technologies. HPSC is expected to become a mainstay in
post-2020 deployments.

The second key emerging technology is Delay or Disruption Tolerant Net-
works (DTNs). DTNs span communications links in an overlay architecture,
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Fig. 1: Illustrative MOSAIC scenario. A set of processing and data-driven tasks
(left as dependency graph) must be mapped to multiple assets with hetero-
geneous computing, communication, and energy capacities. Each asset is also
available over a fixed time window due to terrain effects or orbital parameters.
The goal is to compute all the required tasks as quickly as possible.

enabling connectivity across network boundaries in a transparent manner, re-
gardless of multiple potentially disparate network link layer protocols. A core
principle of this overlay quality is the ability of individual nodes to store net-
work data for possibly long durations before forwarding it to another node. Many
features of Delay Tolerant Networking architectures are of particular utility in
the deep space interplanetary communications realm, where a multitude of link
layers, bandwidth constraints, and disruptions are expected during end-to-end
transfer of mission commands and data [18].

Finally, an interest in multi-robot systems re-emerged. Currently planetary
exploration is limited to benign operating areas due to the inability to land,
traverse challenging terrain, or generally too great a risk for the primary mission
asset. Unfortunately, the most compelling locations are often in these extreme
terrains. Small, low cost, expendable rovers could transport key sensors and
instruments to locations considered too risky for the primary lander, rover, or
astronaut. Also, due to the high communications latencies of deep space missions
these expendable rovers must minimize their dependence on ground control and
be able to operate primarily autonomously. These small craft can be released
from parent rovers and guided toward sampling targets which may be out of
reach of the main craft, either because of risk, or simply to avoid delays from
stopping. The “daughter-craft” do not have advanced processing capabilities
due to weight, power, and cost constraints, but are attractive for a number of
science targets, such as being left behind to investigate transient detections,
risky exploration areas such as Recurring Slope Lineae, or wide-area sampling
for In-Situ Resource Utilization. Two examples of potential future systems being
considered for development are the Mars Helicopter, and the “PUFFER” rover
(Pop-Up Flat-Folding Explorer Robots) [6].

Combining these three trends, we envision scenarios in which a system con-
taining two or more robotic agents with large discrepancies in processing power,
communication bandwidths, data capacities, and energy storage must collabo-
rate to achieve a variety of realistic remote science missions. We are motivated by



Multi-Robot Distributed Computing as a Resource for Mars Exploration 3

ute "2022/07/01 (182) 022/07/01 (162) 20220701 (182}
06:00:0 12:00:00 18:00:00

SMgbs 5 Hops S Meps #Mbzs 3Mbss  3Mbps
IMbos 4 Mens 3 Hems 4 Mbas 5 Mo 5 Mo S Mbos

Shphs 5 Mens S Hins #Mbas 3Mbas  3Mbos

2 Mo 2 oo 2 Mios 3 Meas 4 Moos 3 Mbos
3Mops | 4Mops 3 mops 4 bos 5 vos 5 o 5 Mos

2 Mbps 2 Mops 2 Mops 3 Mops  Mops 3 Mbos

Fig. 2: Contact graph for 3 agents showing times and bandwidths available

the heterogeneity of these systems to study how the choice in computation and
communication capabilities affects small, resource-constrained, high-risk “edge”
devices. In particular how, by optimizing data flows and processing assignments
among all the devices, the mission efficiency can be increased. In this paper
we formalize this problem and present preliminary results in modelling and an-
alyzing Mars exploration missions. Because data and computation are shared
among many devices, we dub a local computation-sharing network a MOSAIC
(Multi-robot On-site Shared Analytics Information and Computing) network.

Our paper presents a high-level trade study of the benefit of distributed
computation and data sharing for plausible Mars exploration scenarios. In Sec-
tion 3 we propose an integer-programming approach which can identify how the
computational load can be distributed over the network. We next present our
problem more formally.

2 Problem Description

In this section, we define our data communication and processing work flow to
represent the routine tasks that make up mission objectives. We consider robotic
agents, which each have an interdependent series of tasks, on-board computing,
sensing, and a time-varying communication link to some or all other agents.
Agents: Let there be N € Z* agents in the network, where Z™ denotes posi-
tive integers. The robot agents are denoted by Ay, As, ..., Ayx. Each agent has
known on-board processing, memory, and communication links.
Tasks and Software Network: The agents perform M € Z* data-driven
tasks. The set of M tasks is denoted T. We consider heterogeneous processing
times, so the time cost of executing task T on agent i is given by: C? (T'). The
model represents, e.g., the worst-case, expected, or bounded computation time,
and so all the times are deterministic. Program outputs are the same irrespective
of the agent doing the computing (or are just as useful). If an agent has two or
more dissimilar processing units, they can be modelled as coincident agents. If
an agent has access to two or more similar processing units, we adjust the costs
of each task to reflect its level of parallelization, but otherwise consider them the
same processor. Tasks also can produce data products. Data products for task
T are denoted d (T'). The size of the data products are known a-priori as s (7)
for task T. The set of required tasks is denoted R C T. Optional tasks have a
reward score (r(T)).

Let Pr be a set of predecessor tasks for 7. Then j € Pr means that task T
depends on the data output of task j. A task may have multiple prerequisite sets,
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one of which must be satisfied entirely. To execute a task, an agent must have all
the data products from one of the tasks predecessor sets, either by computing
them directly, or by receiving them by communication from other agents.
Assumptions: The software network SN does not have any cycles.

A solution is a mapping of tasks to servers (agents) and start-times denoted

S:i— (Aj,t) where j € [1,...,N] and t > 0. Each agent’s computing schedule
in a solution is denoted S; = j —; (t), and has cost equal to the time required to
complete the last task in the agent’s queue, C(S) = max; C(S;) where C(S;) =
max; S;(j) + C! (j).
Communication Graph: A key feature of DTN-based networking is Contact
Graph Routing (CGR) [18]. CGR takes into account predictable link schedules
and bandwidth limits to automate data delivery and optimize the use of net-
work resources. The practical effect of incorporating DTN’s store-forward mech-
anism into the scheduling problem is that it is possible to use mobile agents
as robotic routers to ferry data packets past communication interference. The
time-varying contact graph C'G captures the communication network topology
between agents. For each agent, the graph provides a list of all the time intervals
during which it can establish a directed communication link with another. An
example time line representation for 3 agents with available bandwidths can be
seen in Figure 2.

Links have a time-varying data rate from 0 (not connected) to oo (commu-
nicating to self), denoted by 7;;(¢) for the rate from A; to A; at time ¢. At
any time k, let Gy be the graph representing the set of agents it can send to
or receive from, vertices V = {1,..., N} and the directed edges & along which
communication is possible. The task of communicating the data product d (T')
from A; to A; at time ¢ requires time Cf; (T') o< s (T') /ri;(t) for both agents.
Assumptions: Agents take 0 time to communicate the solution to themselves,
except in the case of multiple on-board processors, which are modelled as coin-
cident processors linked by a given data rate.

Problem 1 (Distributed Computation). Given a set of tasks modelled as a soft-
ware network SN, a list of computational agents A; i € [1... N], a contact graph
CG, and a maximum schedule length C*, find a solution which is a mapping of
tasks to servers (agents) and start times, S = f(i) :— (A4;,t), such that: (1)
item The maximum overall computation time, C(S) = max; C(S;) is no more
than C*; (2) All required tasks are scheduled; (3) At least one of the prerequi-
sites for all required tasks are scheduled; (4) The reward due to optional tasks
ZTG'H‘\R P(T)1{7 is scheduled} 1S Maximized.

3 Scheduler Implementation

To study the role of optimal distributed computing in our mission concepts, we
cast Problem 1 as an integer linear program (ILP). We consider a discrete-time
approximation of the problem with a time horizon of C}j time steps corresponding
to the maximum schedule length C*. The optimization variables are: X, a set
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of Boolean variables of size N - M - C%. X (¢, T, c), with a true entry iff agent A;
starts computing task 7" at time c. D, a set of Boolean variables of size N-M -C7.
D(i,T,c), with a true entry iff agent A; has stored the data products d(T") of
task T at time c. C, a set of Boolean variables of size N? - M - C%. C(i, j, T, c),
with a true entry iff agent A; communicates the product of task 7" to agent A;
at time c. The optimization objective is to maximize the sum of the rewards
corresponding to completed optional tasks, i.e.

N Ci—CHT)
ZZ > r(M)X(i,T,c) (1)

The problem constraints are captured by the following set of equations:

N Ci-chm)

> > X@G,T,e)=1 VT €T\R (2a)
=1 c=1
N CF—Chim)
S>3 X(i.T,e)<1 VI ER (2b)
=1 c=1
X(i,T,e)< > D(i,L,e) Vi€[l,...,N,T€[L,...,M],c€[L,...,C}] (2¢)
LePp

c

M N
SIS (CG,4,T,¢) + CGLiL Ty e) + > X(@i,T,7)| <1
T=1 |j=1 T=max(1,c—CH(T))

Vie[l,...,N],c€[l,...,C}] (2d)
¢ N c—Cf(T)
D(i,T,c+1) — D(i, T, ) < ZZ%C@J,T, o+ > X(i,T.e)
r=1j=1 r=1
Vi€ [l,...,N],T€l,...,M],ce[l,...,C;—1] (2e)
C(i,j.T,¢) < D(i,T,¢) Vi,j€[l,...,N,T€[L,...,M],c€l,...,T] (2f)
D(i,T,1)=0 Yi€ll,...,N,T€[l,..., M] (2g)

Equations (2a) and (2b) ensure that all required tasks are performed and
optional tasks are performed at most once. Equation (2c) requires that agents
only complete a task if they have access to the data products of its predeces-
sor tasks. Equation (2d) captures the agents’ limited computation resources by
ensuring that each agent either performs a task or communicates at any given
time. Equation (2e) ensures that agents learn the content of a task’s data prod-
ucts only if they (i) receive such information from other agents or (ii) complete
the task themselves. Equation (2f) ensures that agent only communicate a data
product if they have the data product themselves. Finally, Equation (2g) models
the fact that data products are initially unknown to all agents.

The ILP has N2MT+2N MT Boolean variables and M (N (3T —1)+N)+NT
constraints; instances with dozens of agents and tasks can be readily solved by
state-of-the-art ILP solvers. We do not propose this as a scheduler to be used
by a robotic heterogeneous swarm. It is intended to be a reliable, heuristic-free
way to compute optimal computing distribution for a given scenario so that we
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(a) Model of Mars 2020 tasks. (b) A corresponding software network.

Fig. 3: A model for the timing of Mars 2020 rover path planning, as discussed.

can do a cost-benefit analysis. However, we will see that the results of this study
could be used by agents as a “playbook”, as discussed next.

4 Scenario Descriptions

The scenarios now presented were chosen to be realistic enough for meaningful
analysis, and to stress different aspects of the computation and communication
scheduling. For both scenarios, we derive optimal computing schedules given
a time-varying contact graph (connectivity and data rates for the agents). We
vary the contact graph to find how the schedules change. The resulting set of
pre-calculated solutions could be used for quick look-up in a real mission, as
long as the robot has knowledge of the communication network topology and
throughput. However, we leave a precise description and analysis of a distributed-
swarm on-board scheduler to future work.

Mars 2020 Assisted Drive One defining feature of proposed Mars Sample
Return mission concepts is the likelihood re-visiting the same area with subse-
quent launches to fetch, retrieve, and eventually launch soil samples for return
to earth[9]. If an on-site computing asset were available to multiple rovers in the
area, they could make use of it for off-loading their required engineering tasks, in
order to take advantage of opportunistic science processing and sensing. Thus,
the assisting asset(s) could provide an “infrastructure upgrade” and could re-
main on-site, providing communication, computation, and data analysis services
for all subsequent phases of the campaign' The asset could be embedded in a
CubeSat network, and “piggy back” on the 2020 launch, similar to the MarCO
CubeSats [5], be embedded in the “sky crane” lander and dropped during the
“flyaway” phase [8,16], or could be a tethered balloon configuration [7].

Thus, we consider a strategic drive campaign by a Mars 2020 rover. We used
information about the intended Mars 2020 drive planning pipeline from a talk
given by Richard Rieber [14]. It is simplified for our use in Figure 3a, which
shows the timings for each task, and waterfall dependencies on prior tasks. The
key point of the pipeline is that all tasks must complete in less than 30 seconds
to accommodate the strategic rate of progress for the mission. The randomized

1 An interesting direction for future research would be to identify the requirements

of such an asset.
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time associated with Select Path is understandable given the mission analysis
from [11]. From this, we created the model software network for Mars 2020
illustrated in Figure 3b. We also included an additional capability which has
been evaluated for Mars 2020, Analyze Terrain. This capability, described in
[12], allows estimation of drive speeds from forward-looking imagery.

The set of tasks are:

— Image- Take images of the surrounding terrain.

— VO- Visual Odometery to estimate location.

— DEM- Build from disparity (or update) a digital elevation map (DEM) to plan
with. (This is shown as two steps in Figure 3a).

— Select Path - Plan a safe path using the localization estimate and DEM

— Analyze Terrain - Not shown in Figure 3a, yet included in [12] as a way to
identify high-slip / high-slowdown terrains (plan paths around them).

We assumed that the three data products which are derived from the drive
cam imagery (VO, DEM, and Drive Speeds), can be computed in parallel, and
that all are useful for the path planner to determine optimal paths. We continued
the assumption that all tasks must to operate within the thirty second time
window, as that was dictated by strategic drive goals, safe speed constraints,
and hardware limits.

To model the terrain in our simulations, we use terrain data classified from

HiRISE imagery from [12]. Multiple terrain types are grouped into different
classes or as obstacles (terrain that cannot be traversed). We do not currently
take slope into account, therefore we model the velocity of a rover in a given
terrain class based on the average speed over multiple slopes for that classifi-
cation. In order to model the different fidelity of data obtained in orbit and on
the ground by the rover, we assume certain terrain types as unknown. When
a rover is in an unknown terrain type, it will move at the velocity of the real
terrain class; but it will plan a path assuming a terrain with the fastest traverse
velocity. If a rover is able to perform Analyze Terrain, we assume it will be
able to correctly classify the terrain within a given radius.
Study Results: We used the MILP scheduler to derive optimal operating
regimes based on the available bandwidth between the Co-processor and rover
Table 4a. We isolated four operating regimes for the rover. In the first regime, the
rover has no access to the assisting resource (regime 0). Regimes 1-4 represent
increasing bandwidth, and therefore increasing savings from assisted computa-
tion. To reveal the strategic benefits of these computational regimes, we simulate
the four rover regimes across a Mars-like strategic drive. Simulations for 4 dif-
ferent regimes were run on 3 different HiRISE terrain subsections of 100 meters
length, 10 times each (resulting in 30 total runs) using stochastic durations
for the path planning and terrain analysis activities. Stochastic times for Path
Planning and Terrain Analysis were assumed to be Gaussian. On-board Path
Planning was N(8,4) versus HPSC-enabled parallel search with A (0.5,0.0001).
Similarly, Terrain Analysis was N'(4,4) and N (0.5,0).

The baseline regime is Regime 1, where the rover performs all path planning
on-board and does not perform any terrain analysis. In Regime 2, the rover
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Fig. 4: Effect of assisted computing, as a function of bandwidth on a Mars 2020-
like mission.

sends data to a balloon where the path planning algorithm is performed and the
results sent back to the rover. Regime 3 is the same as Regime 2, except that
with the extra time, the rover performs terrain analysis on-board, which can be
used for the next planning cycle. In Regime 4, terrain analysis is also performed
on the balloon and the results communicated back to the rover.

Figure 4b shows an example of the paths that are taken for the different
regimes when some of the terrain is unknown without terrain analysis. The yellow
terrain requires terrain analysis to be identified and is also slower to traverse.
From this example, it is shown that with the terrain identification knowledge,
Regime 3 and Regime 4 are able to come up with more efficient paths.

Since it is assumed that the rover must operate on a fixed 30 second cycle, if
the path planning and/or terrain analysis are not completed within the allotted
8 seconds, an overrun will occur, causing the rover to stop until computation is
completed. The distribution of percentage of overruns are shown as box plots in
Figure 4d. As expected, Regime 2 and Regime 4 result in no overruns, whereas
Regime 1 and Regime 3 have (minor) overruns around 50% of the time.

Figure 4b shows the path choices. The main effects of addition computation
assistance is reduced planner overrun and better terrain classification, resulting
in more efficient paths, as shown in 4c and 4d. Terrain types are designated as
different colors and the darker terrain (darkest except for black) can only be
identified using terrain analysis. Figure 4c shows the time to traverse a terrain
for each regime compared to the baseline (Regime 1). We note a measurable
increase in strategic drive efficiency using this limited study technique. Future
work can focus on a more realistic terrain model, including that of the intended
landing site. Intermittent loss of connectivity and varying data rates are inter-
esting avenues for future research.
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Fig. 5: Multi-Robot Scenario 2

Cooperative Exploration The second conceptual mission (Figure 5) is based
on multiple PUFFERs cooperatively (i.e., their autonomous operations are co-
ordinated by sharing information) expanding science and exploration footprints
into areas not within direct line-of-sight of a parent platform (e.g., base station
or flagship rover). The team of PUFFERs will maintain a communication net-
work while exploring an environment with limited direct line of site (e.g., rubble
fields, caves, lava tubes).

Details of the current PUFFER design are given in [6]. We assume that
the drive pipeline is similar to that of Mars 2020 (at a high level). Current
versions of PUFFER utilize a Bluetooth radio with up to 2.1 Mbit/s data rates
at approximately 1 W. Future versions of PUFFER may use a mesh radio, such
as ZigBee, with data rates up to 250 kbits/s with approximately 100 mW power
draw.
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Fig. 6: Data flow diagram representing software network for each PUFFER in
the cooperative exploration. Identical to Figure 3b except Analyze Terrain is
now the science objective (Microscope Image), and must be archived on the
base.

Localize

The PUFFERs are deployed form a lander or rover. As a stationary resource,
it would include more significant computational resources, such as the HPSC.
It would also be large enough to have more power generating capacity. To gain
useful data from the PUFFERs, it must also have communication equipment to
communicate with an orbiter or directly to Earth (See [3] for details).

The parent platform can image the surrounding environment to locate the
puffer to provide terrain-relative localization. We assume on-board state esti-
mation using VO requires an image from the PUFFER’s onboard camera, and
fusing of estimates from the parent (or other PUFFERs) is encouraged. If both
images (from lander and PUFFER) are taken and both localization processed
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Fig. 7: Cooperative exploration scenario. The software network (6) was analyzed
as a function of the bandwidths available between each pair of agents to produce
different processing regimes, producing different distributions of capabilities, and
increasing ability to perform high-reward activities, such as multi-sensor local-
ization or additional science activities.

are performed, the resulting position estimate is more accurate and so is the re-
sulting trajectory from the path planning process. We assume the PUFFERs are
exploring a distributed, but spatially-correlated phenomena, such as water mois-
ture levels. We model the sampling and estimation on a similar terrestrial process
used in farms [17]. The point samples of moisture levels are gathered by spec-
troscopy or dipole measurements, and are incorporated into a spatial-estimation
technique called Kriging [1]. Kriging is computationally expensive, and requires
storage of all measurements — not suitable for computationally-constrained de-
vices like PUFFERs. Figure 6 shows a data flow diagram to represent the soft-
ware network associated with the aforementioned processes. Specifically, local-
ization tasks and path planning are example of computational capabilities that
can be scheduled and placed either onboard the lander or the PUFFER itself.
Colored tasks mark the required vehicle for those capabilities.
Study Results: We analyzed this software network for a variety of time limits
and bandwidths between parent and PUFFER. Unlike the Assisted Drive sce-
nario with 4 notable regimes, we found the operating regimes were more sensitive
to bandwidth given more agents, and therefore omit the full presentation in the
interest of brevity. In the first, low bandwidth precludes cooperation and no
additional science is gained. In the second, moderate bandwidth between base
and rovers allows some images and improvements to localization by offloading
planning and VO to the base station. In the third, the base station takes on most
of the responsibility. The full set of regimes was calculated for finely-discretized
bandwidth steps. As discussed, the lookup table could be used by the rovers
to have an O(1) distributed scheduler, but is intended in this study to inform
hardware design points going forward.

The total benefit of this scenario is measured not by drive distance (as was
the case with the Assisted Drive scenario), but by the number of science samples
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taken, and the total localization accuracy of the robots during sampling. Figures
7a-7c show the number of samples collected, the number of agents who have
access to accurate localization, and the number of agents who rely on the base
station for planning in the case where PUFFERs can only communicate with
the base station. This compact representation compresses the complexity of the
4-robot scheduling problem. The space of solutions (regimes) was too large to
show as we did in Figure 4a.

5 Conclusion

We described the MOSAIC concept for Mars exploration in which scheduling
of computation, communication, and caching of data across networked assets
is shown to be beneficial. We presented a series of scenarios to illustrate how
MOSAIC networks can impact science utility, vehicle performance and would
enable an optimal distribution of computational loads, specially in multi-asset
scenarios - a natural progression of future missions to Mars and other planets.

Based on the improved mission metrics, the methods of this paper can be used
to optimize the hardware of the distributed missions, or design communication
networks for future Mars exploration missions. Thus, determining the “tipping
points” between different processing regimes is most important since the differ-
ences in efficiency between regimes can be very large. We expect this analysis
will fold nicely into a framework similar to [4] which provides a hardware-space
expansion for designing multi-asset missions.

A primary next step is to investigate different scheduling techniques that
could be utilized onboard the assets to allocate computation load. Agents might
have different utility functions and goals that will add an interesting element to
our network problem. Uncertainty and risk management is a key aspect of realis-
tic assets networks for planetary exploration. Several aspects of exploration mis-
sion have uncertainty and can potentially be represented with stochastic models,
such as task outcome and duration, vehicle failure, connectivity, bandwidth vari-
ations, and others. One promising research avenue is to incorporate probabilistic
planning and scheduling approaches [15] to the computation sharing problem,
as well risk-bounded techniques to provide guarantees that the network and the
vehicles are able to operate within user specified bounds.
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