
Optimizing Parameters for Uncertain Execution and
Rescheduling Robustness

Wayne Chi, Jagriti Agrawal, Steve Chien, Elyse Fosse, Usha Guduri
Artificial Intelligence Group
Jet Propulsion Laboratory
California Institute of Technology

Copyright 2019, California Institute of Technology. Government sponsorship acknowledged. CL# XX-XXXX

2Jezero Crater from MRO

Mars 2020 Onboard Scheduler

• M2020 Rover mission is developing an onboard scheduler to utilize unexpected
additional resources (time, energy, data volume) from prior onboard execution.

• The Mars 2020 Onboard Scheduler is a (Rabideau and Benowitz 2017)
• single-shot, non-backtracking scheduler that
• schedules in priority first order and
• never removes or moves an activity after it is placed during a single scheduler run.
• Activities are not preempted
• It does not search except for

• Valid intervals calculations
• sleep and preheat scheduling.

3

A CB

D

Activity D is pinned to this time. If Activity D has
resource conflicts with B it will not be scheduled.
Even if B could have been scheduled somewhere else,
B will not be removed after it has been scheduled.

Challenges with Priority Setting

• Finding a priority set for a non-backtracking scheduler is difficult.

4

A C

D

BD B

• Finding a priority set for multiple invocations of a non-backtracking
scheduler is more difficult.
• Finding a priority set for multiple invocations of a non-backtracking scheduler

while taking into account execution uncertainty is even more difficult than that.

D C BD

Different sets of activities could have
already executed in the schedule

Activity D finishes late and C can no
longer fit in the schedule.

Activity D finishes early and C and B
can be scheduled earlier.

• The order (activity priority) in which activities are considered for
scheduling will greatly affect how many activities can be scheduled and the
efficiency of the of the plan.

Preferred Time

• Activities can be given a preferred time.
• Scheduler will try to place the activity as close to

its preferred time as possible
• Defaults to earliest valid time.

• Preferred time can drastically affect the
effectiveness of the schedule.
• Can affect whether or not activities will be able to

be scheduled.
• Can affect how long certain setup activities will

take.
• E.g. Preheats take longer earlier in the day when it is

colder.

• Other parameters may affect the effectiveness
of the schedule, but are not considered for
this paper.

5

A

B

A
B

Preferred time

Preferred time A Preferred time B

Squeaky Wheel

• The Squeaky Wheel Optimization Algorithm consists of
three components – the Constructor, Analyzer, and
Prioritizer – that repeat until an acceptable solution is
found or time runs out [Joslin & Clements, 1998].

• The Constructor generates a schedule (lightweight,
fast) as the solution.
• In our case, the constructor is the Onboard Scheduler

(Surrogate).
• Its inputs are the requested activities, dependencies,

resource and time constraints, and activity priorities.
• The Analyzer takes the solution, determines the

problem areas, and assigns blame to those areas.
• The Prioritizer takes the blamed elements (activities)

and assigns them new parameters so that the
Constructor may generate a better solution.

6

Parameter Search

• A single output schedule from the Constructor is
insufficient when dealing with execution uncertainty.

• In Parameter Search, the Constructor is ran through a
Monte Carlo of (lightweight) simulations.
• Activity final execution durations are varied based on a

probabilistic model of plan execution.
• All plan executions are then passed as the Solution to the

Analyzer.
• The Analyzer assigns blame to every unscheduled

activity.
• We present multiple Prioritizer variants
• Repeat until we find a priority set that satisfies some

measure of “goodness” OR a certain step bound (time
limit) is reached.
• “Goodness” is evaluated through a scoring function

described in Empirical Results

7

Constructor

8

Ac
tiv

iti
es

, C
on

st
ra

in
ts

, a
nd

In

pu
t P

ar
am

et
er

s
Execution
Simulations

…
…
…

Schedules Generated during Execution

Si
m

ul
at

io
n

O
ut

pu
t t

o
An

al
yz

e

Schedule generated

Ag
gr

eg
at

e
Sc

or
e

New Input Parameters (Scheduling Priorities and Preferred Time)

Data Science Pilot Project

Challenges with Monte Carlo

• We are concerned with edge cases. However, a normal
Monte Carlo would take hundreds or thousands of runs
in order to hit an accurate number of edge cases.
• How do we sample the rare event region (e.g. where activities

fail to be scheduled)
• Importance sampling chooses samples from a new

biased distribution which applies higher weight to the
important regions[Rubinstein and Kroese 2016].
• Similar to Active Learning as we are actively querying a specific

subset of the problem space rather than the whole space.
• The samples from the new distribution are corrected by

weighting against the likelihood ratio between the original,
! " , and the biased, $("), probability density functions (

⁄!(") $("))
• Two common Importance Sampling Methods are Scaling

and Translation

5

()*+,

--

Original
-

()*+,
Translation

()*+,

2- 2-

Scaling

Analyzer (Scoring)

• Primary Metric: Number of activities scheduled
• Secondary metrics
• Handover SOC – SOC leftover at the end of the plan
• Cumulative distance from each activity’s preferred time (lower is better)
• Secondary metrics can be swapped or combined in a non-strict hierarchy

10

Max Step Reprioritization

• For each activity that is not scheduled,
assign it the highest priority.
• Since this is a fixed operation, it is

possible for Max Step Reprioritization
to encounter a cycle for a valid input
plan.
• When a cycle is encountered, randomly

restart.
• Can be too coarse in its search and

promote activities more than
necessary.

11

Stochastic Step Reprioritization

• For each activity that is not scheduled,
increase its relative priority by a
random x ∈ {1…len(activities)}.
• The randomness allows us to escape cycles,

plateus, and local maximas.
• It also emulates search without actually having to

search.

• Randomness doesn’t guarantee the solution
will be found.
• Runtime is not insignificant.

12

Intersect Reprioritization

• For each activity that is not scheduled,
increase its priority above those that share
resource bits and have intersecting execution
time windows.
• Time is one of the most constraining

resources. Therefore, only promote above
activities where time is a conflicting resource.
• Energy is much harder to impact by changing

priorities.

13

Intermediate Schedules
• Other methods focused on the final

executed schedule, but the
intermediate schedules may provide
additional information.
• If an activity was executed, but not

scheduled in any intermediate
schedule, then its priority is increased
by (weight1 * number of failed
schedules)
• If an activity failed to execute then it’s

priority is increased by (weight2 *
number of failed executions)

14

Si
Intermediate Schedule
Generated during Execution

SE Final Executed Schedule

S1 S2 S3 SE

Activity failed to schedule in
this intermediate schedule,
so increase its priority

Preferred Time Manipulation

• 1) Start Time Windows - Preferred times of an activity is shifted such that the
activity’s expected placement does not intersect with the execution time
windows of activities that share resource bits.
• 2) Past Start Time – Shift activities away from regions where activities sharing

resource bits were successfully scheduled in previous Monte Carlos.
• Stochastically shift to Earliest Start, Midpoint, Latest Start, or random time within

execution time window if (1) and (2) are unable to provide a place to schedule the
activity.

15

A

Preferred time A

Resource bit sharing
activities in prior
schedules

Past Start Time

A

Preferred time A

Start Time Windows

Start Time Windows of
resource bit sharing activities

Portfolio

• Stochastically choose one of the previous heuristics at each step of
the search.
• Currently a uniform distribution, but a better distribution could be

learned.

16

Empirical Evaluation

17

Model to Vary Activity Durations
• Use predicted and actual durations from MSL

Submaster Data

• Scale actual durations values by dividing by
corresponding conservative durations

• Use linear regression on scaled values to
derive mean and standard deviation
• Assume ratio of predicted to actual

execution times is normally distributed
• Value on regression line for conservative

duration is mean
• Activities complete on average 32 % early

18

Sol Type Variations
• Sol Types- currently best available data on expected M2020 rover

operations
• Not always completely serial, contain execution, dependency constraints
• 8 different sol type variations

• Average number of activities scheduled
• Higher (lower value) is better

19

Activity Duration Variance Shrink Execution Time Window Varied Incoming SOC

0% activities finish late (mean 70%) 90% overall size (-5% each side) 100% maximum SOC

10% activities finish late (mean 70%) 80% overall size (-10% each side) 90% maximum SOC

20% activities finish late (mean 70%) 70% overall size (-15% each side) 80% maximum SOC

30% activities finish late (mean 70%) 60% overall size (-20% each side) 70% maximum SOC

40% activities finish late (mean 70%) 50% overall size (-25% each side) 60% maximum SOC

Results
• All Parameter Search methods consistently beat

static methods
• Different methods perform better under

different constraints
• When activity duration variance is high, preferred time

performs best
• When ET windows are shrunk, priority is more

important

Varied Incoming SOC

High Activity Duration VarianceShrunken Execution Time Windows

• Portfolio performs better than all other
methods overall.
• Converges faster
• Increase handover SOC
• Results are statistically significant (p < 0.01)

Results

Step Size

Data Science Pilot Project

Challenges with Monte Carlo

• We are concerned with edge cases. However, a normal
Monte Carlo would take hundreds or thousands of runs
in order to hit an accurate number of edge cases.
• How do we sample the rare event region (e.g. where activities

fail to be scheduled)
• Importance sampling chooses samples from a new

biased distribution which applies higher weight to the
important regions[Rubinstein and Kroese 2016].
• Similar to Active Learning as we are actively querying a specific

subset of the problem space rather than the whole space.
• The samples from the new distribution are corrected by

weighting against the likelihood ratio between the original,
! " , and the biased, $("), probability density functions (

⁄!(") $("))
• Two common Importance Sampling Methods are Scaling

and Translation

5

()*+,

--

Original
-

()*+,
Translation

()*+,

2- 2-

Scaling

Future Work

• Learning techniques to improve portfolio weighting
• Current approach is too naive

• Better analysis of activities to avoid undershooting or overshooting
• Vaquero, T. et al., Temporal Brittleness Analysis of Task Networks for Planetary

Rovers. In Internal Conference on Automated Planning and Scheduling (ICAPS
2019), Berkeley, CA, USA, July 2019.

• Decreasing overall Monte Carlo runtime
• Will allow for more time to search the parameter space

23

Conclusions

• Parameter setting for M2020 OBP is challenging search problem
• Offline (ground) priority setting with Monte Carlo over a probabilistic

model of duration can be formulated as SWO (analogue) problem
• We have proposed and evaluated several approaches of Parameter

Search to solve the activity parameter assignment problem.
• Parameter Search outperforms all static algorithms for activity

parameter assignment.
• A portfolio of Parameter Search methods allows for robustness to multiple

types of plans

24

BACKUP

26

Methods

• Single Shift – One activity has a biased distribution. Translate (shift) its
mean by !
• ! = 2$. Chosen by trial and error, but can be any other value

• Potential for learning a good !
• Can use brittleness analysis to determine a better ! for each activity
• Shifting multiple activities at the same time failed as that situation is too

unlikely (likelihood ratios for each activity get multiplied together)
• Scaling did not work too well as we are mostly concerned with

activities running late, not early

6

27

j p l . n a s a . g o v

Temporal Brittleness Analysis for M2020 Task Network

7

Activity 13

Order = 26

Distribution = N(180, 67.77)

Sigma multiplier = 118.7300 | delay = 8046.12)

Start time window = 8046.00

Specified execution time window = 9186.00

Inferred execution time window = 8226.00 (d/tw = 0.022)

Number of dependencies = (before 6, after 16)

Activity 22

Order = 3

Distribution = N(900, 549.40)

Sigma multiplier = 1.3050 | delay = 716.96)

Start time window = 715.00

Specified execution time window = 4315.00

Inferred execution time window = 1615.00 (d/tw = 0.557)

Number of dependencies = (before 20, after 1)

Activity 19

Order = 15

Distribution = N(900, 342.32)

Sigma multiplier = 16.1200 | delay = 5518.21)

Start time window = 5518.00

Specified execution time window = 7398.00

Inferred execution time window = 6418.00 (d/tw = 0.140)

Number of dependencies = (before 8, after 12)

Activity 20

Order = 7

Distribution = N(7800, 6322.62)

Sigma multiplier = 4.6850 | delay = 29621.48)

Start time window = 29621.00

Specified execution time window = 37421.00

Inferred execution time window = 37421.00 (d/tw = 0.208)

Number of dependencies = (before 0, after 0)

Activity 17

Order = 12

Distribution = N(750, 561.55)

Sigma multiplier = 10.5500 | delay = 5924.32)

Start time window = 5919.00

Specified execution time window = 21220.58

Inferred execution time window = 6669.00 (d/tw = 0.112)

Number of dependencies = (before 12, after 9)

Activity 10

Order = 19

Distribution = N(240, 237.05)

Sigma multiplier = 33.9450 | delay = 8046.75)

Start time window = 8046.00

Specified execution time window = 9186.00

Inferred execution time window = 8286.00 (d/tw = 0.029)

Number of dependencies = (before 3, after 19)

Activity 15

Order = 11

Distribution = N(900, 564.23)

Sigma multiplier = 9.7800 | delay = 5518.19)

Start time window = 5518.00

Specified execution time window = 7398.00

Inferred execution time window = 6418.00 (d/tw = 0.140)

Number of dependencies = (before 9, after 11)

Activity 8

Order = 32

Distribution = N(240, 21.11)

Sigma multiplier = 381.1700 | delay = 8046.01)

Start time window = 8046.00

Specified execution time window = 9186.00

Inferred execution time window = 8286.00 (d/tw = 0.029)

Number of dependencies = (before 2, after 20)

Activity 11

Order = 10

Distribution = N(1750, 1152.79)

Sigma multiplier = 9.7200 | delay = 11205.16)

Start time window = 11196.00

Specified execution time window = 12946.00

Inferred execution time window = 12946.00 (d/tw = 0.135)

Number of dependencies = (before 8, after 1)

Activity 5

Order = 28

Distribution = N(780, 528.02)

Sigma multiplier = 170.1600 | delay = 89847.47)

Start time window = 0.00

Specified execution time window = 90624.15

Inferred execution time window = 90624.15 (d/tw = 0.009)

Number of dependencies = (before 0, after 0)

Activity 23

Order = 8

Distribution = N(900, 126.88)

Sigma multiplier = 5.6400 | delay = 715.62)

Start time window = 715.00

Specified execution time window = 4315.00

Inferred execution time window = 1615.00 (d/tw = 0.557)

Number of dependencies = (before 19, after 2)

Activity 3

Order = 4

Distribution = N(2050, 1193.93)

Sigma multiplier = 2.1600 | delay = 2578.88)

Start time window = 0.00

Specified execution time window = 4623.15

Inferred execution time window = 4623.15 (d/tw = 0.443)

Number of dependencies = (before 0, after 0)

Activity 16

Order = 14

Distribution = N(800, 411.39)

Sigma multiplier = 13.4800 | delay = 5545.48)

Start time window = 5544.58

Specified execution time window = 32316.58

Inferred execution time window = 6344.58 (d/tw = 0.126)

Number of dependencies = (before 0, after 22)

Activity 30

Order = 25

Distribution = N(80, 38.02)

Sigma multiplier = 95.1900 | delay = 3619.13)

Start time window = 3619.00

Specified execution time window = 3699.00

Inferred execution time window = 3699.00 (d/tw = 0.022)

Number of dependencies = (before 10, after 10)

Activity 14

Order = 2

Distribution = N(8127, 5264.84)

Sigma multiplier = 1.0350 | delay = 5449.11)

Start time window = 5436.00

Specified execution time window = 13563.00

Inferred execution time window = 13563.00 (d/tw = 0.599)

Number of dependencies = (before 0, after 10)

Activity 28

Order = 24

Distribution = N(80, 17.24)

Sigma multiplier = 83.8150 | delay = 1445.04)

Start time window = 1445.00

Specified execution time window = 3699.00

Inferred execution time window = 1525.00 (d/tw = 0.052)

Number of dependencies = (before 14, after 7)

Activity 29

Order = 29

Distribution = N(80, 15.71)

Sigma multiplier = 230.4100 | delay = 3619.09)

Start time window = 3619.00

Specified execution time window = 3699.00

Inferred execution time window = 3699.00 (d/tw = 0.022)

Number of dependencies = (before 1, after 21)

Activity 0

Order = 20

Distribution = N(1450, 1443.17)

Sigma multiplier = 47.7800 | delay = 68954.49)

Start time window = 0.00

Specified execution time window = 70404.15

Inferred execution time window = 70404.15 (d/tw = 0.021)

Number of dependencies = (before 0, after 0)

Activity 1

Order = 18

Distribution = N(2050, 1769.99)

Sigma multiplier = 32.2900 | delay = 57152.82)

Start time window = 0.00

Specified execution time window = 59188.15

Inferred execution time window = 59188.15 (d/tw = 0.035)

Number of dependencies = (before 0, after 0)

Activity 24

Order = 23

Distribution = N(80, 26.63)

Sigma multiplier = 54.2600 | delay = 1445.17)

Start time window = 1445.00

Specified execution time window = 4624.00

Inferred execution time window = 1525.00 (d/tw = 0.052)

Number of dependencies = (before 15, after 6)

Activity 27

Order = 9

Distribution = N(900, 88.74)

Sigma multiplier = 8.0600 | delay = 715.25)

Start time window = 715.00

Specified execution time window = 4315.00

Inferred execution time window = 1615.00 (d/tw = 0.557)

Number of dependencies = (before 21, after 0)

Activity 21

Order = 6

Distribution = N(800, 327.52)

Sigma multiplier = 4.4200 | delay = 1447.64)

Start time window = 1445.00

Specified execution time window = 6473.00

Inferred execution time window = 2245.00 (d/tw = 0.356)

Number of dependencies = (before 17, after 4)

Activity 32

Order = 5

Distribution = N(1560, 1257.53)

Sigma multiplier = 3.9100 | delay = 4916.95)

Start time window = 4913.00

Specified execution time window = 6473.00

Inferred execution time window = 6473.00 (d/tw = 0.241)

Number of dependencies = (before 9, after 0)

Activity 26

Order = 13

Distribution = N(900, 55.73)

Sigma multiplier = 12.8300 | delay = 715.07)

Start time window = 715.00

Specified execution time window = 4315.00

Inferred execution time window = 1615.00 (d/tw = 0.557)

Number of dependencies = (before 18, after 3)

Activity 18

Order = 22

Distribution = N(1560, 271.58)

Sigma multiplier = 49.1100 | delay = 13337.17)

Start time window = 13335.00

Specified execution time window = 25893.00

Inferred execution time window = 14895.00 (d/tw = 0.105)

Number of dependencies = (before 0, after 2)

Activity 6

Order = 33

Distribution = N(1868, 65.07)

Sigma multiplier = 1336.7700 | delay = 86989.40)

Start time window = 0.00

Specified execution time window = 88857.15

Inferred execution time window = 88857.15 (d/tw = 0.021)

Number of dependencies = (before 0, after 0)

Activity 9

Order = 27

Distribution = N(240, 59.76)

Sigma multiplier = 134.6400 | delay = 8046.12)

Start time window = 8046.00

Specified execution time window = 9186.00

Inferred execution time window = 8286.00 (d/tw = 0.029)

Number of dependencies = (before 5, after 17)

Activity 7

Order = 30

Distribution = N(240, 34.57)

Sigma multiplier = 232.7700 | delay = 8046.33)

Start time window = 8046.00

Specified execution time window = 9186.00

Inferred execution time window = 8286.00 (d/tw = 0.029)

Number of dependencies = (before 4, after 18)

Activity 25

Order = 16

Distribution = N(160, 70.80)

Sigma multiplier = 20.4150 | delay = 1445.34)

Start time window = 1445.00

Specified execution time window = 5549.00

Inferred execution time window = 1605.00 (d/tw = 0.100)

Number of dependencies = (before 16, after 5)

Activity 2

Order = 17

Distribution = N(1450, 925.98)

Sigma multiplier = 26.5300 | delay = 24566.29)

Start time window = 0.00

Specified execution time window = 26016.15

Inferred execution time window = 26016.15 (d/tw = 0.056)

Number of dependencies = (before 0, after 0)

Activity 12

Order = 31

Distribution = N(80, 31.71)

Sigma multiplier = 288.1200 | delay = 9137.27)

Start time window = 9137.00

Specified execution time window = 12946.00

Inferred execution time window = 9217.00 (d/tw = 0.009)

Number of dependencies = (before 7, after 13)

Activity 4

Order = 1

Distribution = N(2340, 578.84)

Sigma multiplier = 0.0950 | delay = 54.99)

Start time window = 0.00

Specified execution time window = 2393.15

Inferred execution time window = 2393.15 (d/tw = 0.978)

Number of dependencies = (before 0, after 0)

Activity 31

Order = 21

Distribution = N(80, 74.55)

Sigma multiplier = 48.5500 | delay = 3619.48)

Start time window = 3619.00

Specified execution time window = 3699.00

Inferred execution time window = 3699.00 (d/tw = 0.022)

Number of dependencies = (before 13, after 8)

Start

End

[74342998.148,74342998.148]

PlanStart
[74250373.42,74250373.42]

s2777139330
[74255010, 74264016]

e2777139330

[0, 74264196]

s2301026438

[74332627, 74336042]

e2301026438

[0, 74336942]

s975166471

[74260497, 74266995]

e975166471

[0, 74267895]

s4180014602

[74253099, 74282720]

e4180014602

[0, 74290520]

s1428498069

[74250373.42, 74270844]

e1428498069

[0, 74271594]

s1935426715

[74255010, 74263956]

e1935426715

[0, 74264196]

s2595632668

[74260497, 74266995]

e2595632668

[0, 74267895]

s1628748831

[74255010, 74263956]

e1628748831

[0, 74264196]

s890307675
[74256798, 74267994]

e890307675

[0, 74269744]

s3100562340

[74251374, 74251374]

e3100562340

[0, 74341998.148]

s1303954085[74332627, 74336042] e1303954085

[0, 74336942]

s637698345

[74337375, 74337375]

e637698345

[0, 74341998.148]

s1184482477

[74250373.42, 74281890]

e1184482477

[0, 74282690]

s1482718045

[74264196, 74267815]

e1482718045

[0, 74267895]

s1734728244

[74256798, 74262234]

e1734728244

[0, 74270361]

s3476862751

[74330777, 74334396]

e3476862751

[0, 74334476]

s2479790398

[74253099, 74256718]

e2479790398

[0, 74256798]

s2062012095

[74271594, 74271594]

e2062012095

[0, 74341998.148]

s3230921536

[74282810, 74282810]

e3230921536

[0, 74341998.148]

s306881732

[74330777, 74335321]

e306881732

[0, 74335401]

s3487499638

[74332627, 74336042]

e3487499638

[0, 74336942]

s3988493260

[74330777, 74336450]

e3988493260

[0, 74337250]

s2376588219

[74330777, 74335690]

e2376588219

[0, 74337250]

s189604695

[74332627, 74336042]

e189604695

[0, 74336942]

s2854244056

[74253099, 74277432]

e2854244056

[0, 74278992]

s223184347

[74253141, 74253141]

e223184347

[0, 74341998.148]

s3929571421[74255010, 74263956] e3929571421

[0, 74264196]

s3622893537

[74255010, 74263956]

e3622893537

[0, 74264196]

s3604776675

[74330777, 74336166]

e3604776675

[0, 74336326]

s1048106212

[74315982, 74315982]

e1048106212

[0, 74341998.148]

s199913206

[74256798, 74269664]

e199913206

[0, 74269744]

s595379195

[74339605, 74339605]

e595379195

[0, 74341998.148]

s485645692

[74275293, 74278912]

e485645692

[0, 74278992]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[180, 180]

[0,inf]

[0,inf]

[0,inf]

[900, 900]

[0,inf]

[0,inf]

[900, 900]

[0,inf]

[0,inf]

[7800, 7800]

[0,inf]

[750, 750]

[0,inf]

[0,inf]

[240, 240]

[0,inf]

[0,inf]

[900, 900]

[0,inf]

[0,inf]

[0,inf]

[240, 240]

[0,inf]

[0,inf]

[1750, 1750]

[0,inf]

[0,inf]

[780, 780]

[0,inf]

[900, 900]

[0,inf]

[0,inf]

[2050, 2050]

[0,inf]

[800, 800]

[0,inf]

[0,inf]

[80, 80]
[0,inf]

[0,inf]

[8127, 8127]

[0,inf]

[0,inf]

[80, 80]

[0,inf]

[0,inf]

[80, 80]

[0,inf]

[0,inf]

[1450, 1450]

[0,inf]

[2050, 2050]

[0,inf]

[80, 80]

[0,inf]

[0,inf]

[900, 900]

[0,inf]

[800, 800]

[0,inf]

[0,inf]

[1560, 1560]

[0,inf]

[900, 900]

[0,inf]

[0,inf]

[1560, 1560]

[0,inf]

[0,inf]

[1868, 1868]

[0,inf]

[240, 240]

[0,inf]

[0,inf]

[240, 240]

[0,inf]

[0,inf]

[160, 160]

[0,inf]

[0,inf]

[1450, 1450]

[0,inf]

[80, 80]

[0,inf]

[0,inf]

[0,inf]

[2340, 2340]

[0,inf]

[80, 80]

[0,inf]

[0,inf]

! " #$
	S

ig
m

a
M

ul
tip

lie
r

Acti
vit

y 9

Acti
vit

y 4

Acti
vit

y 2
5

Acti
vit

y 2
6

Acti
vit

y 2
2

Acti
vit

y 3

Acti
vit

y 2
0

Acti
vit

y 2
7

Acti
vit

y 1
7

Acti
vit

y 7

Acti
vit

y 1
2

Acti
vit

y 1
6

Acti
vit

y 1
4

Acti
vit

y 2
1

Acti
vit

y 1
5

Acti
vit

y 2
3

Acti
vit

y 1
8

Acti
vit

y 6

Acti
vit

y 1
3

Acti
vit

y 2

Acti
vit

y 1
9

Acti
vit

y 0

Acti
vit

y 2
4

Acti
vit

y 1

Acti
vit

y 1
0

Acti
vit

y 1
1

Acti
vit

y 8

Acti
vit

y 5

Analyzer

Brittleness measurement and
evaluation

Visual Inspection
M2020 Tasknet

Vaquero, T. et al., Temporal Brittleness Analysis of
Task Networks for Planetary Rovers. In Internal
Conference on Automated Planning and Scheduling
(ICAPS 2019), Berkeley, CA, USA, July 2019.

28

Methods

• Adaptive – Allows the biased distribution to be changed over time
• Pseudocde:

1. Split the Monte Carlos into smaller batches, !" ∈ $
2. Initial batch, !%, has no biased distribution
3. !" adjusts every activity’s biased distribution based on analysis from !" &'

a. If score is less than perfect, increase biased mean of all activities that ran long.
b. Use a tabu list to ensure that the same activities aren’t being repeatedly biased

a. If every activity is in the tabu list, reset the tabu list.
• Can use brittleness to seed the initial batch !%
• Use Gradient Descent to shift towards the best biased distribution

• Cost function determined by linear regression analysis of activity durations vs activities
dropped.
• If increase in activity duration => more activities dropped, increase biased mean
• If increase in activity duration => less or no more activities dropped, decrease biased mean

8

Data Science Pilot Project

Methods

• Adaptive – Allows the biased distribution to be changed over time
• Pseudocde:

1. Split the Monte Carlos into smaller batches, !" ∈ $
2. Initial batch, !%, has no biased distribution
3. !" adjusts every activity’s biased distribution based on analysis from !" &'

a. If score is less than perfect, increase biased mean of all activities that ran long.
b. Use a tabu list to ensure that the same activities aren’t being repeatedly biased

a. If every activity is in the tabu list, reset the tabu list.
• Can use brittleness to seed the initial batch !%
• Use Gradient Descent to shift towards the best biased distribution

• Cost function determined by linear regression analysis of activity durations vs activities
dropped.
• If increase in activity duration => more activities dropped, increase biased mean
• If increase in activity duration => less or no more activities dropped, decrease biased mean

8

