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Mars 2020 Onboard Scheduler

• M2020 Rover mission is developing an onboard scheduler to utilize unexpected 
additional resources (time, energy, data volume) from prior onboard execution.

• The Mars 2020 Onboard Scheduler is a (Rabideau and Benowitz 2017)
• single-shot, non-backtracking scheduler that 
• schedules in priority first order and 
• never removes or moves an activity after it is placed during a single scheduler run. 
• Activities are not preempted
• It does not search except for

• Valid intervals calculations
• sleep and preheat scheduling.

3

A CB

D

Activity D is pinned to this time. If Activity D has 
resource conflicts with B it will not be scheduled.
Even if B could have been scheduled somewhere else, 
B will not be removed after it has been scheduled.



Challenges with Priority Setting 

• Finding a priority set for a non-backtracking scheduler is difficult.
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• Finding a priority set for multiple invocations of a non-backtracking 
scheduler is more difficult.
• Finding a priority set for multiple invocations of a non-backtracking scheduler 

while taking into account execution uncertainty is even more difficult than that.

D C BD

Different sets of activities could have 
already executed in the schedule

Activity D finishes late and C can no 
longer fit in the schedule.

Activity D finishes early and C and B 
can be scheduled earlier.

• The order (activity priority) in which activities are considered for 
scheduling will greatly affect how many activities can be scheduled and the 
efficiency of the of the plan.



Preferred Time

• Activities can be given a preferred time. 
• Scheduler will try to place the activity as close to 

its preferred time as possible
• Defaults to earliest valid time.

• Preferred time can drastically affect the 
effectiveness of the schedule.
• Can affect whether or not activities will be able to 

be scheduled.
• Can affect how long certain setup activities will 

take.
• E.g. Preheats take longer earlier in the day when it is 

colder.

• Other parameters may affect the effectiveness 
of the schedule, but are not considered for 
this paper.
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Squeaky Wheel

• The Squeaky Wheel Optimization Algorithm consists of 
three components – the Constructor, Analyzer, and 
Prioritizer – that repeat until an acceptable solution is 
found or time runs out [Joslin & Clements, 1998].

• The Constructor generates a schedule (lightweight, 
fast) as the solution.
• In our case, the constructor is the Onboard Scheduler 

(Surrogate).
• Its inputs are the requested activities, dependencies, 

resource and time constraints, and activity priorities.
• The Analyzer takes the solution, determines the 

problem areas, and assigns blame to those areas.
• The Prioritizer takes the blamed elements (activities) 

and assigns them new parameters so that the 
Constructor may generate a better solution.
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Parameter Search

• A single output schedule from the Constructor is 
insufficient when dealing with execution uncertainty.

• In Parameter Search, the Constructor is ran through a 
Monte Carlo of (lightweight) simulations.
• Activity final execution durations are varied based on a 

probabilistic model of plan execution.
• All plan executions are then passed as the Solution to the 

Analyzer.
• The Analyzer assigns blame to every unscheduled 

activity.
• We present multiple Prioritizer variants
• Repeat until we find a priority set that satisfies some 

measure of “goodness” OR a certain step bound (time 
limit) is reached.
• “Goodness” is evaluated through a scoring function 

described in Empirical Results
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Constructor
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Data Science Pilot Project

Challenges with Monte Carlo

• We are concerned with edge cases. However, a normal 
Monte Carlo would take hundreds or thousands of runs 
in order to hit an accurate number of edge cases.
• How do we sample the rare event region (e.g. where activities 

fail to be scheduled)
• Importance sampling chooses samples from a new 

biased distribution which applies higher weight to the 
important regions[Rubinstein and Kroese 2016].
• Similar to Active Learning as we are actively querying a specific

subset of the problem space rather than the whole space.
• The samples from the new distribution are corrected by 

weighting against the likelihood ratio between the original, 
! " , and the biased, $("), probability density functions ( 

⁄!(") $(") )
• Two common Importance Sampling Methods are Scaling 

and Translation
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Analyzer (Scoring)

• Primary Metric: Number of activities scheduled
• Secondary metrics
• Handover SOC – SOC leftover at the end of the plan
• Cumulative distance from each activity’s preferred time (lower is better)
• Secondary metrics can be swapped or combined in a non-strict hierarchy
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Max Step Reprioritization

• For each activity that is not scheduled, 
assign it the highest priority.
• Since this is a fixed operation, it is 

possible for Max Step Reprioritization 
to encounter a cycle for a valid input 
plan.
• When a cycle is encountered, randomly 

restart.
• Can be too coarse in its search and 

promote activities more than 
necessary.
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Stochastic Step Reprioritization

• For each activity that is not scheduled, 
increase its relative priority by a 
random x ∈ {1…len(activities)}.
• The randomness allows us to escape cycles, 

plateus, and local maximas.
• It also emulates search without actually having to 

search.

• Randomness doesn’t guarantee the solution 
will be found.
• Runtime is not insignificant.
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Intersect Reprioritization

• For each activity that is not scheduled, 
increase its priority above those that share 
resource bits and have intersecting execution 
time windows.
• Time is one of the most constraining 

resources. Therefore, only promote above 
activities where time is a conflicting resource.
• Energy is much harder to impact by changing 

priorities.
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Intermediate Schedules
• Other methods focused on the final 

executed schedule, but the 
intermediate schedules may provide 
additional information.
• If an activity was executed, but not 

scheduled in any intermediate 
schedule, then its priority is increased 
by (weight1 * number of failed 
schedules) 
• If an activity failed to execute then it’s 

priority is increased by (weight2 * 
number of failed executions)
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Activity failed to schedule in 
this intermediate schedule, 
so increase its priority



Preferred Time Manipulation

• 1) Start Time Windows - Preferred times of an activity is shifted such that the 
activity’s expected placement does not intersect with the execution time 
windows of activities that share resource bits.
• 2) Past Start Time – Shift activities away from regions where activities sharing 

resource bits were successfully scheduled in previous Monte Carlos.
• Stochastically shift to Earliest Start, Midpoint, Latest Start, or random time within 

execution time window if (1) and (2) are unable to provide a place to schedule the 
activity.
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Portfolio

• Stochastically choose one of the previous heuristics at each step of 
the search.
• Currently a uniform distribution, but a better distribution could be 

learned.
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Empirical Evaluation
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Model to Vary Activity Durations
• Use predicted and actual durations from MSL 

Submaster Data

• Scale actual durations values by dividing by 
corresponding conservative durations

• Use linear regression on scaled values to 
derive mean and standard deviation
• Assume ratio of predicted to actual 

execution times is normally distributed
• Value on regression line for conservative 

duration is mean
• Activities complete on average 32 % early
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Sol Type Variations
• Sol Types- currently best available data on expected M2020 rover 

operations
• Not always completely serial, contain execution, dependency constraints
• 8 different sol type variations

• Average number of activities scheduled
• Higher (lower value) is better
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Activity Duration Variance Shrink Execution Time Window Varied Incoming SOC

0% activities finish late (mean 70%) 90% overall size (-5% each side) 100% maximum SOC

10% activities finish late (mean 70%) 80% overall size (-10% each side) 90% maximum SOC

20% activities finish late (mean 70%) 70% overall size (-15% each side) 80% maximum SOC

30% activities finish late (mean 70%) 60% overall size (-20% each side) 70% maximum SOC

40% activities finish late (mean 70%) 50% overall size (-25% each side) 60% maximum SOC



Results
• All Parameter Search methods consistently beat 

static methods
• Different methods perform better under 

different constraints
• When activity duration variance is high, preferred time 

performs best
• When ET windows are shrunk, priority is more 

important

Varied Incoming SOC

High Activity Duration VarianceShrunken Execution Time Windows



• Portfolio performs better than all other 
methods overall.
• Converges faster
• Increase handover SOC
• Results are statistically significant (p < 0.01)

Results

Step Size



Data Science Pilot Project

Challenges with Monte Carlo

• We are concerned with edge cases. However, a normal 
Monte Carlo would take hundreds or thousands of runs 
in order to hit an accurate number of edge cases.
• How do we sample the rare event region (e.g. where activities 

fail to be scheduled)
• Importance sampling chooses samples from a new 

biased distribution which applies higher weight to the 
important regions[Rubinstein and Kroese 2016].
• Similar to Active Learning as we are actively querying a specific

subset of the problem space rather than the whole space.
• The samples from the new distribution are corrected by 

weighting against the likelihood ratio between the original, 
! " , and the biased, $("), probability density functions ( 

⁄!(") $(") )
• Two common Importance Sampling Methods are Scaling 

and Translation
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Future Work 

• Learning techniques to improve portfolio weighting
• Current approach is too naive

• Better analysis of activities to avoid undershooting or overshooting 
• Vaquero, T. et al., Temporal Brittleness Analysis of Task Networks for Planetary 

Rovers. In Internal Conference on Automated Planning and Scheduling (ICAPS 
2019), Berkeley, CA, USA, July 2019.

• Decreasing overall Monte Carlo runtime
• Will allow for more time to search the parameter space
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Conclusions

• Parameter setting for M2020 OBP is challenging search problem 
• Offline (ground) priority setting with Monte Carlo over a probabilistic 

model of duration can be formulated as SWO (analogue) problem
• We have proposed and evaluated several approaches of Parameter 

Search to solve the activity parameter assignment problem.
• Parameter Search outperforms all static algorithms for activity 

parameter assignment.
• A portfolio of Parameter Search methods allows for robustness to multiple 

types of plans
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Methods

• Single Shift – One activity has a biased distribution. Translate (shift) its 
mean by !
• ! = 2$. Chosen by trial and error, but can be any other value

• Potential for learning a good !
• Can use brittleness analysis to determine a better ! for each activity
• Shifting multiple activities at the same time failed as that situation is too 

unlikely (likelihood ratios for each activity get multiplied together)
• Scaling did not work too well as we are mostly concerned with 

activities running late, not early
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Temporal Brittleness Analysis for M2020 Task Network
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Activity 13

Order = 26

Distribution = N(180, 67.77)

Sigma multiplier = 118.7300 | delay = 8046.12)

Start time window = 8046.00

Specified execution time window = 9186.00

Inferred execution time window = 8226.00 (d/tw = 0.022)

Number of dependencies = (before 6, after 16)

Activity 22

Order = 3

Distribution = N(900, 549.40)

Sigma multiplier = 1.3050 | delay = 716.96)

Start time window = 715.00

Specified execution time window = 4315.00

Inferred execution time window = 1615.00 (d/tw = 0.557)

Number of dependencies = (before 20, after 1)

Activity 19

Order = 15

Distribution = N(900, 342.32)

Sigma multiplier = 16.1200 | delay = 5518.21)

Start time window = 5518.00

Specified execution time window = 7398.00

Inferred execution time window = 6418.00 (d/tw = 0.140)

Number of dependencies = (before 8, after 12)

Activity 20

Order = 7

Distribution = N(7800, 6322.62)

Sigma multiplier = 4.6850 | delay = 29621.48)

Start time window = 29621.00

Specified execution time window = 37421.00

Inferred execution time window = 37421.00 (d/tw = 0.208)

Number of dependencies = (before 0, after 0)

Activity 17

Order = 12

Distribution = N(750, 561.55)

Sigma multiplier = 10.5500 | delay = 5924.32)

Start time window = 5919.00

Specified execution time window = 21220.58

Inferred execution time window = 6669.00 (d/tw = 0.112)

Number of dependencies = (before 12, after 9)

Activity 10

Order = 19

Distribution = N(240, 237.05)

Sigma multiplier = 33.9450 | delay = 8046.75)

Start time window = 8046.00

Specified execution time window = 9186.00

Inferred execution time window = 8286.00 (d/tw = 0.029)

Number of dependencies = (before 3, after 19)

Activity 15

Order = 11

Distribution = N(900, 564.23)

Sigma multiplier = 9.7800 | delay = 5518.19)

Start time window = 5518.00

Specified execution time window = 7398.00

Inferred execution time window = 6418.00 (d/tw = 0.140)

Number of dependencies = (before 9, after 11)

Activity 8

Order = 32

Distribution = N(240, 21.11)

Sigma multiplier = 381.1700 | delay = 8046.01)

Start time window = 8046.00

Specified execution time window = 9186.00

Inferred execution time window = 8286.00 (d/tw = 0.029)

Number of dependencies = (before 2, after 20)

Activity 11

Order = 10

Distribution = N(1750, 1152.79)

Sigma multiplier = 9.7200 | delay = 11205.16)

Start time window = 11196.00

Specified execution time window = 12946.00

Inferred execution time window = 12946.00 (d/tw = 0.135)

Number of dependencies = (before 8, after 1)

Activity 5

Order = 28

Distribution = N(780, 528.02)

Sigma multiplier = 170.1600 | delay = 89847.47)

Start time window = 0.00

Specified execution time window = 90624.15

Inferred execution time window = 90624.15 (d/tw = 0.009)

Number of dependencies = (before 0, after 0)

Activity 23

Order = 8

Distribution = N(900, 126.88)

Sigma multiplier = 5.6400 | delay = 715.62)

Start time window = 715.00

Specified execution time window = 4315.00

Inferred execution time window = 1615.00 (d/tw = 0.557)

Number of dependencies = (before 19, after 2)

Activity 3

Order = 4

Distribution = N(2050, 1193.93)

Sigma multiplier = 2.1600 | delay = 2578.88)

Start time window = 0.00

Specified execution time window = 4623.15

Inferred execution time window = 4623.15 (d/tw = 0.443)

Number of dependencies = (before 0, after 0)

Activity 16

Order = 14

Distribution = N(800, 411.39)

Sigma multiplier = 13.4800 | delay = 5545.48)

Start time window = 5544.58

Specified execution time window = 32316.58

Inferred execution time window = 6344.58 (d/tw = 0.126)

Number of dependencies = (before 0, after 22)

Activity 30

Order = 25

Distribution = N(80, 38.02)

Sigma multiplier = 95.1900 | delay = 3619.13)

Start time window = 3619.00

Specified execution time window = 3699.00

Inferred execution time window = 3699.00 (d/tw = 0.022)

Number of dependencies = (before 10, after 10)

Activity 14

Order = 2

Distribution = N(8127, 5264.84)

Sigma multiplier = 1.0350 | delay = 5449.11)

Start time window = 5436.00

Specified execution time window = 13563.00

Inferred execution time window = 13563.00 (d/tw = 0.599)

Number of dependencies = (before 0, after 10)

Activity 28

Order = 24

Distribution = N(80, 17.24)

Sigma multiplier = 83.8150 | delay = 1445.04)

Start time window = 1445.00

Specified execution time window = 3699.00

Inferred execution time window = 1525.00 (d/tw = 0.052)

Number of dependencies = (before 14, after 7)

Activity 29

Order = 29

Distribution = N(80, 15.71)

Sigma multiplier = 230.4100 | delay = 3619.09)

Start time window = 3619.00

Specified execution time window = 3699.00

Inferred execution time window = 3699.00 (d/tw = 0.022)

Number of dependencies = (before 1, after 21)

Activity 0

Order = 20

Distribution = N(1450, 1443.17)

Sigma multiplier = 47.7800 | delay = 68954.49)

Start time window = 0.00

Specified execution time window = 70404.15

Inferred execution time window = 70404.15 (d/tw = 0.021)

Number of dependencies = (before 0, after 0)

Activity 1

Order = 18

Distribution = N(2050, 1769.99)

Sigma multiplier = 32.2900 | delay = 57152.82)

Start time window = 0.00

Specified execution time window = 59188.15

Inferred execution time window = 59188.15 (d/tw = 0.035)

Number of dependencies = (before 0, after 0)

Activity 24

Order = 23

Distribution = N(80, 26.63)

Sigma multiplier = 54.2600 | delay = 1445.17)

Start time window = 1445.00

Specified execution time window = 4624.00

Inferred execution time window = 1525.00 (d/tw = 0.052)

Number of dependencies = (before 15, after 6)

Activity 27

Order = 9

Distribution = N(900, 88.74)

Sigma multiplier = 8.0600 | delay = 715.25)

Start time window = 715.00

Specified execution time window = 4315.00

Inferred execution time window = 1615.00 (d/tw = 0.557)

Number of dependencies = (before 21, after 0)

Activity 21

Order = 6

Distribution = N(800, 327.52)

Sigma multiplier = 4.4200 | delay = 1447.64)

Start time window = 1445.00

Specified execution time window = 6473.00

Inferred execution time window = 2245.00 (d/tw = 0.356)

Number of dependencies = (before 17, after 4)

Activity 32

Order = 5

Distribution = N(1560, 1257.53)

Sigma multiplier = 3.9100 | delay = 4916.95)

Start time window = 4913.00

Specified execution time window = 6473.00

Inferred execution time window = 6473.00 (d/tw = 0.241)

Number of dependencies = (before 9, after 0)

Activity 26

Order = 13

Distribution = N(900, 55.73)

Sigma multiplier = 12.8300 | delay = 715.07)

Start time window = 715.00

Specified execution time window = 4315.00

Inferred execution time window = 1615.00 (d/tw = 0.557)

Number of dependencies = (before 18, after 3)

Activity 18

Order = 22

Distribution = N(1560, 271.58)

Sigma multiplier = 49.1100 | delay = 13337.17)

Start time window = 13335.00

Specified execution time window = 25893.00

Inferred execution time window = 14895.00 (d/tw = 0.105)

Number of dependencies = (before 0, after 2)

Activity 6

Order = 33

Distribution = N(1868, 65.07)

Sigma multiplier = 1336.7700 | delay = 86989.40)

Start time window = 0.00

Specified execution time window = 88857.15

Inferred execution time window = 88857.15 (d/tw = 0.021)

Number of dependencies = (before 0, after 0)

Activity 9

Order = 27

Distribution = N(240, 59.76)

Sigma multiplier = 134.6400 | delay = 8046.12)

Start time window = 8046.00

Specified execution time window = 9186.00

Inferred execution time window = 8286.00 (d/tw = 0.029)

Number of dependencies = (before 5, after 17)

Activity 7

Order = 30

Distribution = N(240, 34.57)

Sigma multiplier = 232.7700 | delay = 8046.33)

Start time window = 8046.00

Specified execution time window = 9186.00

Inferred execution time window = 8286.00 (d/tw = 0.029)

Number of dependencies = (before 4, after 18)

Activity 25

Order = 16

Distribution = N(160, 70.80)

Sigma multiplier = 20.4150 | delay = 1445.34)

Start time window = 1445.00

Specified execution time window = 5549.00

Inferred execution time window = 1605.00 (d/tw = 0.100)

Number of dependencies = (before 16, after 5)

Activity 2

Order = 17

Distribution = N(1450, 925.98)

Sigma multiplier = 26.5300 | delay = 24566.29)

Start time window = 0.00

Specified execution time window = 26016.15

Inferred execution time window = 26016.15 (d/tw = 0.056)

Number of dependencies = (before 0, after 0)

Activity 12

Order = 31

Distribution = N(80, 31.71)

Sigma multiplier = 288.1200 | delay = 9137.27)

Start time window = 9137.00

Specified execution time window = 12946.00

Inferred execution time window = 9217.00 (d/tw = 0.009)

Number of dependencies = (before 7, after 13)

Activity 4

Order = 1

Distribution = N(2340, 578.84)

Sigma multiplier = 0.0950 | delay = 54.99)

Start time window = 0.00

Specified execution time window = 2393.15

Inferred execution time window = 2393.15 (d/tw = 0.978)

Number of dependencies = (before 0, after 0)

Activity 31

Order = 21

Distribution = N(80, 74.55)

Sigma multiplier = 48.5500 | delay = 3619.48)

Start time window = 3619.00

Specified execution time window = 3699.00

Inferred execution time window = 3699.00 (d/tw = 0.022)

Number of dependencies = (before 13, after 8)

Start

End

[74342998.148,74342998.148]

PlanStart
[74250373.42,74250373.42]

s2777139330
[74255010, 74264016]

e2777139330

[0, 74264196]

s2301026438

[74332627, 74336042]

e2301026438

[0, 74336942]

s975166471

[74260497, 74266995]

e975166471

[0, 74267895]

s4180014602

[74253099, 74282720]

e4180014602

[0, 74290520]

s1428498069

[74250373.42, 74270844]

e1428498069

[0, 74271594]

s1935426715

[74255010, 74263956]

e1935426715

[0, 74264196]

s2595632668

[74260497, 74266995]

e2595632668

[0, 74267895]

s1628748831

[74255010, 74263956]

e1628748831

[0, 74264196]

s890307675
[74256798, 74267994]

e890307675

[0, 74269744]

s3100562340

[74251374, 74251374]

e3100562340

[0, 74341998.148]

s1303954085[74332627, 74336042] e1303954085

[0, 74336942]

s637698345

[74337375, 74337375]

e637698345

[0, 74341998.148]

s1184482477

[74250373.42, 74281890]

e1184482477

[0, 74282690]

s1482718045

[74264196, 74267815]

e1482718045

[0, 74267895]

s1734728244

[74256798, 74262234]

e1734728244

[0, 74270361]

s3476862751

[74330777, 74334396]

e3476862751

[0, 74334476]

s2479790398

[74253099, 74256718]

e2479790398

[0, 74256798]

s2062012095

[74271594, 74271594]

e2062012095

[0, 74341998.148]
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e3230921536

[0, 74341998.148]
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[0, 74336942]

s3988493260
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[0, 74337250]

s2376588219

[74330777, 74335690]

e2376588219

[0, 74337250]

s189604695

[74332627, 74336042]

e189604695

[0, 74336942]

s2854244056

[74253099, 74277432]

e2854244056

[0, 74278992]

s223184347

[74253141, 74253141]

e223184347

[0, 74341998.148]

s3929571421[74255010, 74263956] e3929571421

[0, 74264196]

s3622893537
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e3622893537

[0, 74264196]
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[74330777, 74336166]

e3604776675

[0, 74336326]

s1048106212

[74315982, 74315982]

e1048106212

[0, 74341998.148]

s199913206

[74256798, 74269664]

e199913206

[0, 74269744]

s595379195

[74339605, 74339605]

e595379195

[0, 74341998.148]

s485645692
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[0,inf]
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[7800, 7800]

[0,inf]

[750, 750]

[0,inf]

[0,inf]

[240, 240]

[0,inf]

[0,inf]
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[0,inf]

[0,inf]

[0,inf]

[240, 240]

[0,inf]

[0,inf]
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[0,inf]
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Vaquero, T. et al., Temporal Brittleness Analysis of 
Task Networks for Planetary Rovers. In Internal 
Conference on Automated Planning and Scheduling 
(ICAPS 2019), Berkeley, CA, USA, July 2019.
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Methods

• Adaptive – Allows the biased distribution to be changed over time
• Pseudocde:

1. Split the Monte Carlos into smaller batches, !" ∈ $
2. Initial batch, !%, has no biased distribution
3. !" adjusts every activity’s biased distribution based on analysis from !" &'

a. If score is less than perfect, increase biased mean of all activities that ran long.
b. Use a tabu list to ensure that the same activities aren’t being repeatedly biased

a. If every activity is in the tabu list, reset the tabu list.
• Can use brittleness to seed the initial batch !%
• Use Gradient Descent to shift towards the best biased distribution

• Cost function determined by linear regression analysis of activity durations vs activities 
dropped.
• If increase in activity duration => more activities dropped, increase biased mean
• If increase in activity duration => less or no more activities dropped, decrease biased mean
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