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Context

* The problem of mapping and monitoring the dynamics of tropical
wetlands/inundations has received attention by some in the CYGNSS
community thanks to some of the features of the reflected signals

e Coherent-looking, strong forward scattering off calm in-land bodies of water
* Modest attenuation by water-standing vegetation

* This has led to assume that
e Contribution to Peak SNR is from the first Fresnel zone (FFZ) only
» Spatial resolution (footprint size) is dictated by FFZ

* Retrieval algorithms have been formulated on a) link between percentage of water in
the footprint and Peak SNR or) threshold of detectability based on mapping a) into a
binary water/no-water classification with use of additional information



Relevant Modeling Work

* Loria et al. have modeled simplified wetlands and found that

e Contribution to coherent scattering from areas outside FFZ not insignificant,
causing oscillation in Peak SNR

* Link between Peak SNR ~ Reflectivity ~ % water in the footprint is not
straightforward and leads to errors in retrievals of wetlands extent

* Peak SNR varies considerably with water-scene topology, hence other SNR
metrics (such as sd) might be preferable as detectors of water

e Detection algorithm (based on Peak SNR ~ % water in FFZ) for simplified

wetland with vegetation finds 75% probability of detection and false alarm
rate of 3%
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Consider circular scatterer to examine how the amount of water in the first Fresnel zone affects the received
power SNR for a circle with increasing radius

e As the size of the scatterer exceeds the first Fresnel zone, there is significant ripple as contributions from
higher Fresnel zones add constructively or destructively

 The complementary problem of circular hole in planar scatterer shows similar ripple, indicating contributions
to first Fresnel zone from outside
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e Simulating CYGNSS DDMs over large area

* Figure below shows example of MOD44W watermask data used as input to
our simulation

« MODIS allows us to get realistic, complex scenarios that CYGNSS
measurements encounter in wetlands

 We're interested in looking at how scattering from multiple Fresnel zones
and complex scenes affect the SNR
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Consistent with
contribution coming
from area outside the
first Fresnel zone

Modified SNR (dB)

SNR variability for cases with high and low percentages of water in the first
Fresnel zone is consistent with argument we showed in earlier slides
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Validating Modeling Results with CYGNSS data

* Objectives
* Analyze DDMs from a range of targets to understand SNR variability

* Analyze Raw IF from a range of targets to understand role of coherent
integration versus Fresnel zones contribution

* Choose canonical targets (as close as possible to perfect localized scatterers)
to minimize confounding effects from vegetation, roughness, heterogeneity
* Lakes at high elevation, surrounded by steep walls, such as crater lakes



Analysis of Lake Okeechobee, Florida

* CYGNSS L1 DDM/c® data from Observatory #3 (PRN#5) for Feb. 1, 2018, at~ 6
hours UTC is used.

* The reflection point track is passing over midsection of Lake Okeechobee, FL (~ 60
X 40 km in size)

* The meteorological data for that time indicated a north wind, U; =3 m/s for
Feb.1, 2018

* This example shows the transition from incoherent weak diffuse scattering from
land to coherent specular reflection from a small (western) portion of the lake, to
incoherent weak diffuse scattering from the rest of the lake, to incoherent strong
diffuse scattering from the near-coastal area of the Atlantic ocean.

* |t demonstrates a negative impact of even very low surface roughness on the
coherence of the reflected GNSS signal.

* Modeling of the decorrelation of the coherently reflected signal from the lake
supports this conclusion.



The reflection point track is passing over midsection of Lake Okeechobee, FL
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The points of the reflection track for PRN#5 over the lake and corresponding
bistatic radar cross section 0° measured by CYGNSS observatory #3

Lake Okeechobee: tracks for observ. #03 and Refl. for PRN05 on 2018/02/01
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A strong reflected signal is found for points 13, 14 and 29, presumably a coherently reflected by
the calm surface of the lake not significantly affected by the wind.
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CYGNSS DDMs (in dBs) for several reflection points: incoherent weak diffuse scattering

for points 1, 5, 10 and 19, and coherent specular reflection for points 13 and 14

Lake Okeechobee: DDM for obs#3, PRN05, Feb. 1,2018 att=1 GPS s
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Lake Okeechobee: DDM for obs#3, PRN05, Feb. 1,2018 att=13 GPS s
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Lake Okeechobee: DDM for obs#3, PRNO5, Feb. 1, 2018 att =5GPS s
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Lake Okeechobee: DDM for obs#3, PRN05, Feb. 1,2018 att=14 GPS s
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Examples of coherent specular reflection for point 29 (from a lake near West Palm Beach),
and incoherent strong diffuse scattering for points 32-34 from the ocean

Lake Okeechobee: DDM for obs#3, PRNO5, Feb. 1, 2018 att=31 GPS s
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A more detailed picture of the scattering from the lake: increased decorrelation of the coherently
reflected signal due to surface roughness in a presence of increased wind fetch

Lake Okeechobee: o, and wind fetch for obs. #03 and PRN5 on 2018/02/01
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Results of modeling of the significant wave height (SWH)
and the decorrelation as a function of fetch
SWH(fetch) = 4*(h2) = 4 = [[ W(x, fetch)d?*k

Rayleigh parameter: R, = 0.5*7*SWH*cos0,,./4; Decorrelation: I' = exp(— 4* R )
SWH and decorrelation at 9, =18° vs fetch at U, =3 m/s Decorrelation over Lake Okeechobee at ainc =18°
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Analysis of Lake Qinghai Dataset

* Lake Qinghai is a saline-alkaline lake located in the northeast hollow
of the Tibet Plateau, China.

e Extends from 36°32' to 37°15'N (~70 km) and 99°36' to 100047'E
(~100 km), with an altitude of ~3,200m above sea level.

e 8 tracks from 7 sets of LO data collected near the Lake Qinghai from 1
February to 29 May 2018 is being analyzed (similar to Li et al., 2018)

* Raw IF data are processed to produce 1 sec DDMs



Summary of Dataset Analyzed

CYGNSS SC m Incidence Angle Surface Condition

2018-02-01T16:33:13 25.9-26.0°

2018-02-07T14:35:02 05 28 22.1-22.2° Ice
2018-02-20T08:56:44 06 16 31.9-31.6° lce
2018-03-08T00:43:41 05 10 27.3-27.6° Ice
2018-03-19T719:02:30 06 05 27.6-27.3° lce
2018-03-30T13:42:57 04 17 27.7-27.1° Broken Ice
2018-03-30T13:42:57 04 19 25.0-25.1° lce

2018-05-29T08:51:46 07 17 25.1-25.2° Open Water
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Power levels

Power levels are generally high over lake but they are not consistent



Feb. 01, 2018: Ice

CYGNSS 03 20180201 Sec 1
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Feb. 07, 2018: Ice

CYGNSS 05 20180207 Sec 15
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Feb. 20, 2018: Ice

Loss of power in the middle: reason unknown

CYGNSS 06 20180220 Sec 21
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Mar. 08, 2018: Ice

CYGNSS 05 20180308 Sec 32 .5
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Mar. 19, 2018: Ice

CYGNSS 06 20180319 Sec 18 .5
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Mar. 30, 2018: Broken Ice

Higher peak in broken ice compared to ice
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Mar. 30, 2018: Ice

CYGNSS 04 20180330 Sec 25 .5
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May 29, 2018: Open Water

More spreading in open water

CYGNSS 07 20180529 Sec 16
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Preliminary Observations

* Peak power levels (SNR) are highest in open water compared to ice,
indicating calm water conditions with limited roughness

* Meteorological data not known

* Lack of uniformity points to effect of contributions from area around
specular reflection in the lake outside first Fresnel zone, which varies

along the track

* Pond at one edge of the lake seems to create a strong coherent
reflection



