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Outline

* Notional Mars Sample Return (MSR) Campaign Architecture
Overview

 MSR Earth Entry Vehicle (EEV) Concept Overview

« MSR Containment Assurance Scheme
— Assembly procedure
— Key interfaces and interfaces under study
— Load environment and implementation

* Analysis Methodology in LS-DYNA

— LS-DYNA Analysis Examples

» Single pawl studies
» Piece-Part Studies of Secondary Containment Vessel (SCV)
* Progress towards integrated, system-level model
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Notional Mars Sample Return (MSR) Campaign
Overview

Mars Formulation

Launch from .
/ Select Acquire/Cache
Earth/Land on > . | N s |
Mars amples amples ‘
Sample Tube on
Sample Caching Rover Mars Surface
(Mars 2020)
\ 4
+~
5, Retrieve/Package Launch Samples
T Samples on Mars ) to Mars Orbit
Orbiting S&mple (0S)
in Mars Orbit
Capture and Isolate R
eturn to
Sample Container > Earth > Llandon Earth
\ Earth Return Orbiter Orbiting Sample ‘
(0S) on Earth
A4
Retrieve/Quarantine
E /Q Assess Sample
S and Preserve Samples | S > .
S z Hazards Science
&5 on Earth R 4
SRy e |

Mars Returned Sample

Handling Sample Science

Pre-Decisional Information — For Planning and Discussion Purposes Only



Jet Propulsion Laboratory
California Institute of Technology

Notional MSR Key Elements of Interest
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MSR Earth Entry Vehicle (EEV) Concept
Overview
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Mars Formulation

Earth Entry
Vehicle Design

| EEVRelease

d Atmospheric entry

« MSR EEV is a passive entry system to safely return
Martian samples to the surface of Earth
« Akey design driver is ensuring robust and reliable
containment assurance to meet planetary protection
requirements
* Primary purpose is impact response mitigation of
the payload
* Achieved primarily through design with high energy
absorbing materials and implementation of low-
backlash/motion-limiting mechanisms at key
interfaces

Descent

Impact Ianding

Landing Zone

Outside Landing Zone
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Mars Formulation

Orbiting Sample (OS) Primary Containment Secondary Containment

Sample Tube Vessel (PCV) Vessel (SCV)

The Contained-0S is composed of: the (1) Orbiting Sample (OS), the (2) Primary Containment Vessel (PCV), and (3)
Secondary Containment Vessel (SCV)

The goal of the C-0S is to provide returned samples with a “redundant, fail-safe containment” methodology able to
survive Earth entry, descent, and impact landing - EEV required to provide majority of impact response mitigation
during landing
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Contained-OS Assembly Procedure
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Mars Formulation
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Interface Currently under Study

*  Containment not assured when PCV and SCV: 3]
— Suffer overt structural failure (e.g. container cracks)
— Gap/fail their seals
* Due to deflection of the lid and/or base
* Due to failure of the latch/closure system

» Believe that Containment Assurance currently driven by failure
of the latch system for SCV

Zero-Backlash
Lid-Latch

Response 1
Concern 1 »  Characterize performance of lid

latches during C-OS assembly

Quasi-static loading during in- *  Minimize insertion loads
orbit robotic assembly »  Ensure robustness against off-

nominal assembly environments

Response 2
Concern 2 »  Characterize performance of lid
latches during dynamic impact event
Dynamic loading during Earth »  Ensure positive structural margins
re-entry and impact landing «  Ensure no gapping at lid and latch
interface
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SCV Lid Latch Interface Details o ooty
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Flexure-Pawls on SCV

SCV Lid

Torsion Springs

Crushable Foam

\

Low-Backlash Pawls
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SCV Pawl Lid-Latch Design

Lid-latch is based off of a low-backlash
pawl design
— Used on MSL Remote Sensing Mast
and SMAP Solar Array
The logarithmic cam profile - prevents
backlash in an impact event
— Entry/impact forces will push lid closed,
resulting in increased latch engagement
— Torsional springs help to drive
engagement
Latch requires (very low) friction to
remain engaged

Radial forces must be reacted -
overhang surface to reduce both
reaction loads and contact stresses

Success in quasi-static environment —
not yet characterized in impact
environment
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Camming Angle

Contact Angle

Lower
reaction
force

/
Spring Torsion

Pre-Decisional Information — For Planning and Discussion Purposes Only 10



C-0OS Model Overview
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Primary driver of Contained-OS design is assurance of sample containment

All key mechanisms and interfaces must be able to structurally withstand peak dynamic load
environments, while maintaining proper seal engagement at lids of containment vessels

Properly assessing the Contained-OS in a dynamic load environment is critical to achieving a
viable design

st L LT

Impact environment imposed to asses impact
survivability of lid latch

Lid inserted onto SCV base to
assess feasibility of assembly

Acceleration Vector |
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Earth-Impact Dynamic Load Environment NA

»  Drop-tests were performed to determine the dynamic response at the C-OS during impact

* Ininitial simulations, the measured acceleration curves are used to approximate the load environment at
the C-OS sub-assembly level

« In future simulations, full-scale system level models will be implemented in order to accurately capture
load transfer from the EEV to the C-OS to the sample tubes
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|dealization of Load Environment on C-OS fet Propulsion Laboratory
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Interface transfers
attenuated load to base
of C-0S

b

1. Encase SCV in rigid shell
2. Prescribe boundary acceleration to rigid shell
3. Load transfer from rigid shell to SCV sub-structure

Prescribed
Acceleration
from Test Data

Rigid Shell
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Dynamic Analysis Methodology in LS-DYNA

Mars Formulation

Goal #1 Goal #2
»  Characterize performance of lid latch in : : :
: Characterize performance of lid latch during
assembly environment .
: L : , dynamic impact event
»  Quantify quasi-static load capacity of lid-latch : : :
»  Quantify robustness against contact gapping.
system
Understand Sensitivities of Isolated Understand Sensitivities of SCV Sub-
Latch to Design Parameters Assembly to Design Parameters

Understand Sensitivities of SCV Sub-
Elements to Off-Nominal Assembly
Conditions

Understand Structural Performance
under Off-Nominal Impact Environments

Understand Load Capacity of SCV Latch

Final Goal
High-fidelity, system-level model of C-OS assembly and Earth impact landing with EEV to capture coupled load transfer.
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Single Pawl Characterization Studies

Mars Formulation

Goal: Characterize performance of pawl during assembly under varying spring stiffness and geometric
conditions

Method: Generate rigid-body, single-pawl model to define design space and to verify behavior of
*CONSTRAINED JOINT element in LS-DYNA

Assumptions: All components rigid, all rotational and in-plane translational DOFs constrained on shell,
reduced density of pawl material (to attenuate unrealistic transient effects of pawls due to short simulation time)

SCV Clevis Constrained
Cylindrical
Joint
SCV Pawl
Rigid Shell with
Outer Profile of
SCV Lid
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Initial Simulation-Based Design Space

Mars Formulation

Insertion Load Trends

Insertion Load Trends
Spring stiffness . .
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impact insertion loads too high
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SCV Sub-Assembly Model

Mars Formulation

Goal: Characterize performance of SCV latch during SCV lid insertion, retention, and dynamic load environments

Method: Generate break-out model that includes isolated SCV hardware, pawls, and bonded foam — vary parameter space
using Hyperstudy

Assumptions: Pawils rigid, chamfer added to lid, base nodes of SCV tied to rigid shell, foam tied to lid, no load contribution
from seal and PCV rebound

Rigid section for

prescribed
displacement
Chamfer added
to lid Rigid shell to
prescribe
acceleration
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Animation of Simplified System Nasa B
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Axial Insertion Loads at SCV Latch

Mars Formulation

Insertion Load Trends

o Insertion, Impact, and Extraction Loads
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« As spring stiffness increases, insertion load increases

« Extraction loads are consistent over spring stiffness range —material failure occurs prior to
latch failure

— Material deflection that produces gapping at lid more likely failure mode than latch failure

« Contact force at lid interface remains non-zero during impact, preliminarily indicating that no
(global) gapping occurs during impact

— Local gapping could occur due to lid deflection
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General Behavior of Lid Latch

Mars Formulation

Due to asymmetry in pawl

distribution, lateral load Mechanism allows for self-
imbalance occurs on initial alignment in off-nominal case
insertion

LTIy
LT LT Clelein)

When rotational DOF constraints on
lid removed during insertion, lateral
load imbalance causes instability

The technical data in this document is controlled under the U.S. Export Regulations, release to foreign persons may require an
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Summary and Future Work

Mars Formulation

« Simulation and analysis and performance characterization of lid latch
designs is currently underway — will be verified with testing

* In conjunction, simplified sub-system level models are being used for
understanding behavior and sizing — will be verified with testing

« Sub-system level models and lid latch models will be integrated into a
single C-OS system-level model to quantify coupled performance of
mechanisms under impact

« (C-0OS system-level model will be integrated into EEV model to simulate
entire Earth impact landing event

* Analysis will eventually be verified with an extensive test program that
includes:

— Material test campaign
— PCV impact, SCV impact, PCV/OS impact, C-OS impact testing
— Soft and hard EEV impact testing
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Mars Formulation

Back-Up: Path Forward to
System-Level Model
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Non-Spherical OS ldealized FEM

Mars Formulation

|dealized OS model used to verify positive structural margins for hardware sizing
verification — all interfaces tied and no mechanisms explicitly modeled

Hex-Packing Lid Shell
= 31Cells
= 30 Tubes

= 1 Valve Cell

Latch Assy.

Dust Seal
Canister Core
Top Foam Ring

Tube Sleeves

Atmospheric
Tank Assy.

Base Fasteners
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OS Behavior under Impact

Mars Formulation
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Animation of Assembly

Mars Formulation
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