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Abstract

In this paper we describe the methods and system
concepts that detect and locate in real-time the active
(cooperative) and  passive  (non-cooperative)
spacecraft, which we call targets, at the Geostationary
Orbit (GEO) and at lunar distances. The methods do
not assume any orbital knowledge of the target
spacecraft, thus can be used for both quiescent and
maneuvering spacecraft. We show by simulations that
this approach can achieve meter-level three-dimension
(3D) positioning accuracy with reasonable time delay
measurement accuracy.

The methods leverage on existing satellites and
natural features (lunar case) with accurately known
positions that can act as references, and/or in the case
of the GEO places a dedicated “reference” spacecraft
into an eccentric geosynchronous orbit over a region
of interest (e.g., sky above North America). The
ground antennas track the signals transmitted or
reflected by the target and the reference spacecraft to
measure their signals’ time difference of arrival
(TDOA). There are two modes of operations:

a) “Single-differencing” — this approach assumes a
transmitting radar illuminating both the reference
and an uncooperative spacecraft (the target), and
the ground radar antennas receiving the radar
echoes to derive the relative position between the
reference and the target.

b) Double-differencing — this approach applies to the
scenarios when either a) the target and/or the
reference spacecraft with difference clocks
transmitting one-way ranging signals to the
ground, or b) multiple uplink radars are used to
illuminate the reference and the target.

We outline the mathematical derivations of the above
schemes, and provide the accuracy performance
simulations for some realistic and hypothetical
scenarios. We also discuss some other applications.

I. Introduction & System Concept

In this paper we derive the theory and describe
the high-level system concepts that demonstrate the
feasibility of detecting active (cooperative) and
passive (non-cooperative) spacecraft in real-time in
the Geostationary Orbit (GEO) and in lunar orbits,
where Earth’s Global Navigation Satellite System
(GNSS) navigation services are not available. The
methods do not assume any orbital knowledge of the
target spacecraft, thus can be used for both quiescent
and maneuvering spacecraft. This enables tracking
spacecraft under dynamic situations like during
thrusting, and executing immediate correction in case
of trajectory deviation. We show by simulations that
this approach can achieve meter-level three-dimension
(3D) positioning accuracy.

For the GEO case, this can be done by making use
of existing GEO satellites as references, and/or by
placing a dedicated “reference” spacecraft into an
eccentric geosynchronous orbit over a region of
interest (e.g. above N. America). The sky above North
America is rather congested, and there is no shortage
of GEO satellites with accurately known positions that
are separated from their neighbors by less than one
tenth degree longitude [1]. For the dedicated
“reference” spacecraft approach, which is more
expensive but is more controllable, one can adjust the
orbit so the “reference” spacecraft can loiter around
the sky back-and-forth in the vicinity of the GEO over
the region of interest. In this way, the reference
spacecraft can be close to any “static” GEO targets
along its path.

For the lunar case, the reference can be a signal-
transmitting beacon (active), and/or a prominent
feature (passive) on the near-side of the lunar surface.
One example of lunar prominent feature is the Tycho
Crater located near the South Pole of the Moon, which
has been used for the moon-bounced calibration for
DSN’s uplink arraying experiment [2].
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On the ground, the ground antennas track the
signals transmitted or reflected by the target and the
reference spacecraft to measure their signals’ time
difference of arrival (TDOA). There are two modes of
ground operations:

a) “Single-differencing” — this method assumes a
transmitting radar illuminating both the reference
and an uncooperative spacecraft (the target), and
the ground radar antennas receiving the radar
echoes measure the difference in signal arrival
time to derive the relative position between the
reference and the target. The term “single-
differencing” is in parenthesis because it differs
from the convention meaning of single-
differencing, and refers to the fact that the TDOA
between the radar echo reflected by the reference,
and that reflected by the target is measured only
once at the receiving radar. Due to the proximity
between the reference and the target, this delay
data type eliminates most of the systematic errors
in the delay measurements when the radio waves
pass through the solar plasma and the Earth’s
atmosphere, and also due to the instrumental delay
of the receiving ground radar. The transmitted
radar pulse hits the reference and the target at
different time, but this time-bias is taken care of in
the differencing equations. This “single-
differencing” measurement technique achieves the
same systematic error cancellation capability as a
double-differencing approach, yet only tolerates
the random error effect of a single-differencing
measurement.

b) Double-differencing — this approach applies to the
scenarios when either i) the target and/or the
reference spacecraft with different clocks
transmitting one-way ranging signals to the
ground, such as formation-flying spacecraft and
lunar lander-rover pair, or b) multiple uplink
radars are used to illuminate the reference and the
target. In both cases, in addition to the
aforementioned systematic errors, the reference
and the target spacecraft have different time-
biases or clock-biases with respect to the ground
antennas. To eliminate these biases, a double-
differencing data type is created by differencing
the two TDOA'’s from two ground antennas. A
high-level concept of this approach is also
discussed in Section 4 of [3].

The rest of the paper is organized as follows.
Section II outline the derivations of the “single-
differencing” and double-differencing algorithms.
Section III provides the simulation assumptions and
results. Section IV discusses the conclusion and other
applications.

II.  Derivation of Algorithms

The 3D positioning computation methods for the
“single-differencing” approach and the double-
differencing approach are outlined as follows.

A. “Single-Differencing” (One Transmitter)

In this problem formulation that leverages on
“single-differencing” measurements, the method
assumes one transmitting radar GSy and n receiving
radar, whose positions are accurately known, where
n = 3, and no three antennas lie on a straight line.
Consider the i*" receiving antenna GS; tracking the
echoes from the target and the reference spacecraft as
shown in Figure 1.
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Fig 1: 3D Positioning by “Single-Differencing”

We construct the cost function
fi(P) = c6t; = (IR = Soll + IR =S.|I) +
(IR =So) + Pl +|I(R =5,) + P|)

fori=1,2,..,n (D



[l || denotes the magnitude of a vector. For example,

for the relative position vector P= [y] , ||I_5|| =

VxZ2 +y? 422, Also 6t; is the measured TDOA

between the target and the reference spacecraft at
station GS;, and c is the speed of light.

B. Double-Differencing (Multiple Transmitters)

In this problem formulation that leverages on
double-differencing, n antennas form n-—1
independent baselines. = The method assumes n
receiving antennas whose positions are accurately
known, where n > 4. Consider taking a subset of m
baselines for satellite position determination, where

SSmS(g

3 independent baselines to achieve a 3D position fix.
Consider the i*" baseline with two receiving antennas
GS;,and GS;, shown in Figure 2.
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Fig 2: 3D Positioning by “Double-Differencing”

We construct the cost function

fi(P) = 86t = (R =S, I = IR =S,I) +
(R =35+ Pl - I(R =5.,) + P|)
fori=1,2,....m 2)

64t; is the measured time delay of reference signal
arrival between x and .—S'Z, minus the measured time
and .—S'l—;
Note that .—S'l—l), -—91—2)7 and R are known quantities.

delay of target signal arrival between —S:

For both cases the Jacobian of the cost function
can be calculated (equation 3) as follows:
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The Jacobian matrix is an X 3 matrix for “single-
differencing” method, and a m X 3 matrix for
double-differencing method. We outline the method
for double-differencing as shown below:
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We then evaluate P using the Newton’s Method as
shown below. Using an initial guess Py,
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III. Simulations

We consider both the GEO case (36000 km) and the
lunar case (360000 km). An example of 4 ground
antennas at Goldstone, Alaska, Haleakala (Hawaii),
and Malargue is shown in Figure 3. The reference and
the target spacecraft are separated by 50 kilometers,
and are located in the sky above North America. For
the “single-differencing” case, we assume one
transmitting radar located at Goldstone, and the
receiving radars are located at Alaska, Haleakala, and
Malargue. For the double-differencing case, the four



ground antennas can form 6 baselines, 3 of which are
independent.
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Fig 3: Example of 4 Ground Stations

To illustrate the effect of pairwise distances
between ground stations on 3D localization accuracy,
we use a hypothetical constellation of 4 ground
stations on an idealized sphere of Earth with variable
separations as shown in Figure 4.

Generic 4 Ground Stations

Pairwise separation

Pairwise se$

Fig 4: Hypothetical 4 Ground Stations on Sphere

We consider the ideal case that the transmitted or
reflected signals from the reference and target
spacecraft can be detected and identified. Also, we
assume that all the systematic biases like media delays,
time-offsets, and instrument delays are perfectly

2 The DSN’s Same Beam Interferometry (SBI) system was
verified to produce the MRO-ODY residuals of 1 picosecond, or

cancelled by the differencing processes, and we only
consider the effect of ground station delay
measurement errors with zero mean and Gaussian
distribution. In real-life operation, the positioning
accuracy would be inferior due to the residual
systematic biases, but should be minimal due to the
close proximity between the reference and the target,
and the systematic biases would be mostly cancelled.

A. “Single-Differencing” Method:

The  Root-Mean-Square  error  (RMSE)
performance of the GEO case as a function of ground
receiving station delay measurement errors at Alaska,
Haleakala, and Marlargue is shown in Figure 5, and
the lunar case is shown in Figure 6. For the
hypothetical case (Figure 4), we assume the
transmitting radar is located at the center site, and the
three receiving radars are located on the
circumference. The RMS error performance at the
GEO distance as a function of ground station delay
measurement errors and for various separation
between the transmitting radar and receiving radars are
shown in Figure 7, and the lunar case are shown in
Figure 8.

Note that for both the GEO and lunar cases, the
“single-differencing” method produces sub-meter
level 3D relative localization accuracy when the delay
differential measurement error is of the order of one
meter’, and better than 10-meter-level accuracy when
the delay differential measurement error is of the order
of 10 meters. Also, as observed in the ideal and
hypothetical cases for GEO and Lunar distances
(Figures 7 and 8), the RMSE performances are almost
indistinguishable for transmit-receiver radar distances
between 1 km and 7000 km for RMSE of 50 cm or
lower. Again in real-life operation the positioning
accuracy would be inferior, but not by much compared
to the ideal case due to the close proximity between
the reference and the target, and the systematic biases
would be mostly cancelled.

0.3 mm in range uncertainty, private communication with Jim
Border.
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Fig 5: RMSE at GEO Distance (Realistic Case in Fig 3, Single-Differencing)
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Fig 6: RMSE at Lunar Distance (Realistic Case in Fig 3, Single-Differencing)
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Fig 7: RMSE at GEO Distance (Hypothetical Case in Fig. 4, Single-Differencing)
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B. Double-Differencing Method:

In double-differencing, the four ground stations
form 6 baselines; three of which are independent.
The RMS error performance of the GEO case as a
function of ground receiving station delay
measurement errors at  Goldstone, Alaska,
Haleakala, and Marlargue is shown in Figure 9, and
the lunar case is shown in Figure 10. For the
hypothetical case (Figure 4), the RMS error
performance at the GEO distance as a function of
ground station delay measurement errors and for
various separation between the center node and the
circumferential nodes are shown in Figure 11, and
the lunar case are shown in Figure 12.

SC @ GEO; Ref Target Sep

It is quite surprising that the “single-
differencing” performance is more than two order of
magnitude better than the double-differencing
approach. To achieve meter level accuracy in
double-differencing, the delay differential
measurements need an accuracy of 1 mm, which is
supportable with Deep Space Network (DSN)’s high
precision equipment’. However, it is not clear if
commercial and military equipment can afford this
kind of measurement accuracy. The big difference
in accuracy performance between “single-
differencing” and double-differencing is currently
under investigation.
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Fig 9: RMSE at GEO Distance (Realistic Case in Fig 3, Double-Differencing)
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Fig 10: RMSE at Lunar Distance (Realistic Case in Fig 3, Double-Differencing)
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Fig 11: RMSE at GEO Distance (Hypothetical Case in Fig. 4, Double-Differencing)
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SC @ Moon; Reference-Target Separation = 50 km (16-digit accuracy, non-radial = 0)
Number of Baselines = 6; Number of simulations = 10000;

Fig 12: RMSE at Lunar Distance (Hypothetical Case in Fig. 4, Double-Differencing)

IV. Conclusion & Applications

In this paper, we describe two 3D localization
methods based on “single-differencing” and double-
differencing of signal arrivals between two
spacecraft and multiple baselines of antennas on the
ground. Simulations show that the methods can
achieve meter level relative positioning accuracy for
spacecraft at GEO and at lunar distance.

Given the above simulation results, as long as
the delay between the target and the reference can be
measured to within the accuracy levels for “single-
differencing” and double-differencing as shown
above, the techniques can be useful in some other
civilian and military applications, where the
uncooperative targets of interest are maneuvering in
some fast and unpredictable manner.

For passive uncooperative spacecraft case, one
example is using “single-differencing” with multiple
mobile ground radars to support a friendly aircraft
engaging in dogfight with an enemy aircraft. In this
case, the friendly aircraft is the reference, and the
enemy aircraft is the target. A transmitting ground
radar illuminates both the reference and the target.
The receiving radars receive their echoes and

compute the relative position vector P in real-time,
which provides the vital information of the direction
and range of the enemy aircraft. Similarly, multiple
ships and/or buoys can form multiple baselines of
sonars to support a friendly submarine’s cat-and-
mouse pursuit of an enemy submarine. In both cases,
predictive approaches like Kalman filter might not
be too effective, and real-time and accurate relative
positioning would be essential.

The double-differencing approach can be useful
for precision and real-time detection and localization
of incoming missiles. High-power and directional
radars can illuminate some of the GEO satellites over
the North America’s sky that can serve as references,
and broad-beam radars can illuminate the lower
range of attitude (1000 — 2000 km) that covers the
missiles’ trajectories. The ground receiving radars
use TDOA measurements to compute the positions
of the missiles in real-time.

Other applications include orbital debris
removal services [4], and precision approach radar
system for airports.
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