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Abstract—Leveraging on our experience developing, 

engineering accurate, interactive 3D visualization systems for 

robotic system and flight mission formulation, development and 

operations, our team at the Jet Propulsion Laboratory has built 

a high performance, interactive 3D visualization system called 

Ranger, that runs in a web browser and has been designed for 

use during the entire mission life-cycle.  This includes mission 

formulation through operations, robotic system research, flight 

mission design and development, flight mission operations, 

simulation test-bed experiments and in-the-field testing.  Our 

Ranger system not only provides robotic missions with a to-scale 

situational awareness visualization capability, but also an 

interactive commanding tool whereby user interactions in the 

web browser can be communicated back through the system to 

robotic system or spacecraft control software. In this paper we 

will discuss the Ranger system architecture, rendering 

performance, current use cases and deployments, system 

development challenges, as well as a newly implemented fully 

immersive VR system capability. 

I. INTRODUCTION 

In recent years, the performance of 3D graphics-intensive 
software, running inside a typical web browser, has improved 
dramatically through the use of WebGL [1] and JavaScript [2] 
and has allowed visualization system developers to move 
away from workstation-class systems with expensive discrete 
graphics cards, to more affordable and common place 
desktop/laptop systems and mobile devices such as iOS and 
Android systems.   

With a goal to provide a re-useable, cost-effective, multi-
mission 3D situational awareness capability across the various 
types of robotic and spacecraft missions developed at JPL and 
to continue to support the typical interactive, telemetry and 
simulation-driven robotic system and flight mission 
visualizations that our team has typically developed in the 
recent past, but with a simpler cross-platform deployment 
model, we have developed a WebGL/JavaScript rendering 
engine called Ranger with an accompanying back-end called 
Flow, that is completely data driven and can be used across 
our varied and multi-mission user base. Similar to our past 
systems used by the NASA/JPL Mars Science Laboratory [3] 
(MSL) and the NASA/JPL Low Density Supersonic 
Decelerator [4][5] (LDSD) projects, our new system is 
currently in use by JPL Office of Naval Research swarms of 
autonomous surface boat tasks, JPL mission formulation and 
the NASA/JPL Mars M2020 (M2020) [6] mission. The  

 
Figure 1. Mission specific data drives the multi-mission 

Ranger/Flow system. 

Ranger system makes use of robotic and flight system CAD 
models, high resolution terrain models, planetary data for 
relevant bodies, streaming vehicle telemetry or simulation-
generated data as well as ancillary information such as 
telemetry alarm limits, flight software states and environment 
data.  

II. GOALS AND ARCHITECTURE  

Ranger’s client-server system architecture, Fig. 1, allows 
multiple, simultaneous users to view telemetry data streamed 
live during vehicle operations, from test-bed simulations or 
from stored data during playback, and because our Flow 
server has been designed to stream data from multiple 
simultaneous streams, live telemetry can be intermixed with 
previously generated predicted data or other simulation 
generated data.  

A. System Goals 

Based on our past experience working with JPL robotic 
system and flight mission customers, we converged on a set 
of goals that we used to drive our system design and 
development.  

 

• Build an easily re-useable, multi-mission, data 
driven system that provides a cost-effective 
solution for building mission visualization 
applications more rapidly than previous legacy 
systems and is easy to deploy on a variety of 
desktop and hand-held devices. 



• Maintain engineering accuracy and to-scale 
visuals with enough precision to allow mission 
engineers to safely command vehicles, develop 
and test vehicle control software and algorithms 
and determine state and health of the vehicle(s) 
during tests and operations. 

• Support multiple, simultaneous visualization 
application clients in web browsers on a variety of 
hardware devices. 

• Support data provided by multiple simultaneous 
data sources. Either streamed live, from log file 
playback or a combination of both. 

• Provide an easy to use server interface for 
providing mission-specific data processing, 
visuals and/or vehicle commanding. 

• Provide robust exception handling and 
connect/re-connect capability for clients, to 
ensure stable system operation during critical 
mission events. 

• Support the typical flight and robotic mission 
hardware configurations encountered at JPL and 
other NASA centers, including support to 
accurately visualize vehicle articulation. 

• Peer review new system features with code 
reviews and use continuous, automated 
integration and unit test execution during system 
development. 

B. Ranger System  Architecture, Accuracy and UI  

 
The Ranger system is essentially a client-server system 

with a Python v3.7 backend called Flow and a 
WebGL/JavaScript rendering engine called Ranger. The 
Ranger rendering engine core is written in C++ and OpenGL 
[7] and makes use of features available to a typical OpenGL 
ES 2.0 renderer, including GLSL [8] shaders that are used to 
re-program the target device’s graphics processing unit 
(GPU). The Ranger C++ code does the heavy lifting regarding 
ephemerides calculations, memory allocation and other 
computational utilities such as graphics primitive generation 
(cones, spheres, etc.). Because the core, multi-mission part of 
Ranger is C++ code, in the future we plan to investigate 
linking existing code-bases such as the JPL NAIF [9] library 
and customer provided predictive models directly into 
Ranger.  Because C++ and OpenGL code does not directly 
execute inside a web browser, we use the open source 
Emscripten [10] tool to compile Ranger’s C++ and OpenGL 
into WebGL and asm.js [11] or WebAssembly [12]. As a note, 
asm.js performance is substantially better than pure JavaScript 
and is ~10-50% of native C++ code. While we have not done 
extensive performance testing, our Eclipse app can render at 
~60fps on a Mac laptop. Fig. 3. WebAssembly performance 
is advertised to be near native C++. We plan to confirm these 
number in future Ranger performance testing.  

The JavaScript code generated during the Emscripten 
compile process is responsible for managing Ranger’s main 
event loop, user interactions, viewing camera actions (such as 
transitions from one object to another), scene-graph traversal 

and evaluation and provides the interface to the user 
application layer. See Fig. 2. 

User specific application-side logic can be built on top of 
the Ranger JavaScript using the system’s provided JavaScript 
API. In addition to this API, Ranger supports a complete 
JSON [13] scene description and scene management system, 
whereby users can describe their scene without writing 
JavaScript at all. Simple data entry for planetary bodies and 
CAD-model based visuals are supported as well as GLSL 
code that can be embedded directly in the JSON scene 
description. Note that for multi-device support, users can 
provide a scene description with branches for desktop and 
mobile devices, with the desktop branch providing high 
resolution visual assets if desired.  Ranger can detect the 
device at run time and choose the appropriate scene branch 
based on device performance. 

Regarding visual asset data, Ranger supports the typical 
data types supported by most 3D rendering systems, such as 
triangle meshes, line sets, geometric primitives such as cubes, 
spheroids, cones, as well as texture imagery and CAD models 
in glTF 2.0 [14] format with Physically-Based Rendering. 
Ranger can also process and render streamed triangle mesh 
data, which can be useful when displaying the output of a 
simulation that may be modifying a robotic system’s 
configuration on the fly for example. The Ranger-Eclipse 
application is shown in Fig. 3. 

 

1) Accuracy: System accuracy is an important 

component of any visualization system developed to display 

engineering data and especially when users may make 

decisions regarding the health and safety of the robotic 

system or spacecraft that is visualized.  To address this 

accuracy issue, and with the understanding that at best, there 

is limited hardware support for OpenGL and WebGL double 

precision, we use techniques in the Ranger engine to mitigate 

the lack of double precision support, especially when 

depicting scenes containing large Solar System magnitude 

numeric values.  

 

 
Figure 2. Ranger multi-mission core and mission specific layer 

 



 
Figure 3. Ranger 2017 Solar Eclipse Application. 

These techniques include: 
 

• A frame centric system that eliminates the need 
for a world coordinate system. Essentially, all 
scene object are rendered with respect to the 
viewing camera and the viewing camera is always 
parented to the object of interest. This helps 
preserves numerical accuracy. 

• All Ranger renderer calculation are double 
precision until the final transformation is sent to 
the GPU. 

• Use of a Log Depth Buffer allows for Solar 
System-scale scenes while minimizing Z-fighting. 
 

2) Templated Scenes Description: Ranger has a scene 

description template system designed to make the 

development of scene elements simpler and faster and with 

reusable and shareable components. Templates are JSON 

data that provide default parameters and an abstraction 

mechanism for scene objects, such as planetary bodies and 

spacecraft.  Users can choose to override template default 

parameters and expand on existing templates to generate 

custom scene objects in a fashion not too dissimilar from 

common object-oriented language inheritance. Ranger 

provides pre-made Templates for planetary bodies, geometric 

primitives, mathematical calculations and conversions, and 

input data types while also allowing users to create their own 

templates for uses benficial to their application. Scene 

construction becomes simpler because scenes can be created 

once and then re-used in future applications, either as-is or 

with changes to the Template parameters as needed. For 

complex scenes, Template nesting is also supported. Fig. 4. 

 

3) User Interface (UI) Elements: UI elements for Ranger 

applications are rendered on top of an HTML5 Canvas and 

can be provided statically or contained in a Ranger scene 

description JSON blob and with Cascading Style Sheets 

(CSS) [15] and art asset references as needed. Whether 

loaded statically or read in a JSON blob, users can 

communicate UI interactions back to the Ranger engine using 

Ranger’s JavaScript API. For system-level interactions such 

as mouse motion and button presses, Ranger function 

handlers track those event and report back to the user’s 

application code.  How those events are handled is up to the 

application developer. 

 

4) Label system: Ranger provides a basic labeling system 

for 3D objects in the scene, that are designed to uniquely 

identify objects by name, especially at distances from the 

viewing camera where object geometry may be difficult or 

impossible to resolve, by mapping user provided scene object 

text labels from three-dimensional space to screen space and 

with screen clipping determination. The look and feel of the 

labels is determined by user provided HTML5 and CSS.  

C. System  Architecture – Flow 

 
Flow is the server-side component of the Ranger system 

and is a set of Python classes that can process multiple 
telemetry data source streams, each on a unique Python 
thread, aggregate that data based on contained telemetry time, 
and provide that data to the Ranger renderer via a WebSocket 
interface.  Similar to the Ranger renderer, Flow has been 
designed with a multi-mission core and a Python plugin/API 
layer that provides users with an interface to their custom, 
mission specific telemetry processing code. This user 
provided code typically is written in a way to access or 
provides data to Flow from some user data source and 
depending on user needs, can also receive messages from 
Flow that may be generated by user interaction in the web 
browser running the Ranger renderer or by computations in 
Flow. Because the user provided mission-specific code is 
written in Python, typical data structures, threads of execution, 
file i/o for additional configuration files, and all other typical 
Python constructs are supported by Flow.  

At run-time, the Flow core reads a JSON configuration file 
that provides a mapping between expected telemetry items 
and visuals to be rendered in Ranger.  For example, in our 
Mars 2020 visualization, the Flow JSON config file specifies 
that each spacecraft position and orientation data processed by 
Flow and time ordered, is to be applied to the 3D CAD model  
of the Mars 2020 flight system rendered in Ranger. Similar 
configuration items are used by Flow to change the rendered 
flight system configuration based on received flight software 
states, such as rendering an entry parachute or descent thruster 
visuals. 

III. USE CASES AND RECENT DEPLOYMENTS 

A. Use Cases and Target Platforms 

 
Based on many years of experience developing real-time, 

interactive 3D visualization systems at JPL and in industry, 
we identified a core set of use cases that we felt our Ranger 
system should support to cover most of the typical robotic and 
space mission scenarios that we would encounter at JPL.  
These include single and multiple vehicle situational 



awareness displays for Solar System-scale scenarios as well 
as smaller-scale mission scenarios that might include 
environments that range in size from many kilometers to 
bench-top system such as a robotic arm visualization for 
example. We also identified the need to provide a predictive 
model in the loop capability based on our experience building 
telemetry displays for the LDSD project. Predictive models in 
the loop can be used to auto-trigger actions, such as changes 
in the display, the generation of vehicle commands and for 
prompting users to take a specific action. Regarding target 
platforms, because Ranger runs in a typical web browser, 
modern mobile devices, laptop and desktop systems can all 
support Ranger applications.  We’ll discuss challenges 
associated with this in a later section.  We have also had good 
success embedding Ranger applications in web pages, which 
essentially provides the ability to combine an interactive 3D 
display with contextual information in a variety of formats 
such as text, strip charts and plots.    

B. Recent Ranger System Deployments 

 

1) Ranger Spacecraft Ploting Engine (Ranger-SCOPE): 

Is a mission formulation tool designed to depict planetary 

body and single or multiple spacecraft trajectories, with 

visual overlays to highlight important mission events as well 

as computed values display spacecraft range to target body, 

angles between bodies, and mission specific items such as the 

display of predicted thrust vectors over time, especially priot 

to and during trajectory correction maneuvers. Ranger-

SCOPE is a standalone software tool that currently does not 

make use of the Flow server component.  Users generate a 

JSON file containing position and orientation and all other 

ancillary data, over time, for all planetary and spacecraft 

bodies to be visualized. This JSON file can then be dragged 

into the browser runngin Ranger-SCOPE and the JSON file 

will be imported into the system. Among the many provided 

system features, Ranger-SCOPE gives users the ability to 

display their spacecraft trajectories with respect to any of the 

bodies in provided in the JSON input file, with 

transformation computed on the fly, as well parenting the 

viewing camera on a body and the choosing another body as 

the camera target. Fig. 4.  

 

 
Figure 4. Ranger template example to create particle primitives 

 

 
Figure 5. Ranger-SCOPE showing constellation of CubeSats for 

proposed Sun interferometer experiment 

2) Mars 2020 telemetry and simulation visualization 

(Ranger-M2020): Is an interactive mission visualization 

designed to display live telemetry and spacecraft predict data 

for the Mars 2020 mission, similar to our telemetry 

visualization system [16] that we deployed  for the 

NASA/JPL MSL project on landing night in 2012. We’ve 

designed the appication using the Ranger system architecture 

depicted in Figure 1 above and using mission specific code in 

Flow to process and feed Entry, Descent and Landing (EDL) 

simulation data to the Ranger rendering engine. Fig. 5. Later 

deployments of the system will process streaming spaceceraft 

telemetry and will be used by mission EDL engineers during 

testing and possibly live, during the actual EDL event on 

Mars, if real-time data is available via one of the relay 

spacecraft currently oribiting Mars. During system execution, 

Flow processes live telemetry data by bundling spacecraft 

data based on a pre-determined time window, typically 

something like a 1-2 second window for live telemetry as in 

an operational scenario, the various spacecraft telemetry 

items that the system requires may arrive out of time order. 

For example, in the current processing window, because the 

system will never receive teletry items for spacecraft 

position, orientation, altitude, etc. with perfectly matching 

time stamps, as long as the time stamps are within the 

window size, the bundle of data will be forwarded to Ranger 

for display.  If during telemetry processing, a specific data 

item is received with a more recent time stamp then an 

already received data item of the same type (e.g. spacecraft 

position), the entire data bundle for that time window is 

discarded and a new time window is created and the attempt 

to create a new 



 
Figure 6. Ranger display depicting various stages of the M2020 

flight system during simulated EDL 

and complete data bundle is repeated. When displaying 

simulation data the process is much simpler as there is no 

possibility of receiving data not time-ordered.  In this case, 

data bundles are created, from the simulation data and sent to 

Ranger at a rate specified by the user at run time.  Typically 

at frame rates of 30-60hz. In addition to spacecraft telemetry 

data, the application will display high-resolution terrain data 

for the landing region, as well as visuals showing the landing 

error ellipse. Finally, as a departure from our 2012 MSL 

landing night visualization system, there is no direct coupling 

of a specific physics-based mission simulation environment 

in the Ranger system. We have chosen to support both JPL’s 

DSENDS and NASA Langley’s Program to Optimize 

Simulated Trajectories (POST) through the use of M2020 

mission provided simulation files in Matlab format [17].  

Having large amounts of simulation data provided in this 

manner was a challenge, but through the use of the Python 

SciPy [18] module, we were able to read and process the very 

large (300MB) simulation files directly in Flow.  

 

3) Ranger-Eclipse:  One of the most complex Ranger 

applications developed to date was built for the JPL 

Education and Public Outreach organization to depict and 

help educate the public regarding the 2017 solar eclipse seen 

across much of the United States.  The eclipse application 

[19] used correct orbital dynamics to display the Sun, Earth 

and Moon system for the entire duration of the 2017 eclipse 

across much of North America.  To access the application, 

users would enter the URL of the site serving the application 

on Amazon Web Services (AWS) [20], and the application 

code and data, including planetary body position data, texture 

imagery, and geometry for bodies, would download to the 

user’s browser running on their device of choice. When using 

the application, users could choose a location in the path of 

the eclipse, scrub back and forth over time, and view a 

rendering of how much of the Sun would be covered by the 

Moon. Other interesting views were also available such as a 

“virtual telescope” view from the user’s selected location and 

looking directly at the application’s virutal Sun; An “Earth, 

Sun, Moon” view showing Earth and Moon orbits, as well as 

the Ecliptic plane; An Moon/Earth view with displayed 

shadow umbra and penumbra cones. During the actual eclipse 

in August, 2017, the application had over one million users 

on devices ranging from iPhone 5s to more modern Android, 

iPhone, iPad and desktop systems. Fig. 3. 

IV. RANGER SYSTEM DEVELOPMENT CHALLENGES 

During development of the Ranger rendering engine and 

during initial system testing, we identified a number of 

challenges centered around differences in rendering 

performance, memory allocation and the ability to gracefully 

recover from application errors in the various web browsers 

that we had planned to support (Safari, Edge, Chrome, 

Firefox). We quickly found that across browser versions 

performance could change dramatically. To address these 

issues, we found it necessary to system test across all browser 

versions and hardware devices that we planned to support, 

prior to releasing a new version of the Ranger code. The large 

number of tests required quickly became a challenge for our 

small team, as we were supporting four operating systems 

(iOS, Android, Windows, Mac OSX), four web browsers, 

multiple mobile devices (iPhones 5, 6, 7, iPad variations, 

latest Android) and desktop Mac and Windows systems. In 

addition, we found that some platforms did not support the 

GLSL EXT_frag_depth which we required for our log depth 

buffer calculations [21]. For these platforms, we let the 

hardware perform native depth buffering, but in cases where 

z-fighting or alpha blending problems were apparent, we 

rendered objects in order based on distance from the viewing 

camera.  

V. EMBEDDING RANGER IN A WEB PAGE 

A unique deployment of Ranger which is typically 

unavailable to applications build to run natively on a specific 

operating system, is the ability to embed a Ranger application 

in a web page with related content. We can accomplish this 

using an HTML IFrame [22], which allows users to embed a 

Ranger web site, referenced by the site’s URL, into an 

existing web page or by embedding a Ranger application 

directly into an existing web page using an HTML Div [23] 

container. Either method (IFrame or Div) allows for full 

interactivity with the embedded Ranger application, which 

includes both user interaction via mouse or touch events and 

application-to- application interaction using JavaScript 

function calls into Ranger. This application-to-application 

interface for example, can be used by the parent web page to 

control Ranger’s camera position and pointing and provides 

a nice way for users to build a web page with a variety of 

related content, including a Ranger interactive 3D display and 

with control over much of Ranger’s built in functionality. Fig. 

7. 



 
Figure 7. Ranger application embedded in a NASA web page 

VI. RANGER SYSTEM DOCUMENTATION 

Because Ranger has evolved into a complex system 

designed for rapid development of applications, we have 

compiled over 90 Wiki pages of user-level documentation, 

hosted in our Github repo, with example code and images and 

a primary focus on system setup, application tutorials and the 

Ranger JavaScript API.  The repo is currently only available 

to JPL users but there have been discussions regarding open-

sourcing Ranger. 

VII. IMMERSIVE VR AND FUTURE DEVELOPMENT 

 
In the summer of 2018, we added an immersive VR 

capability into the Ranger core (Fig. 5) through the use of 
WebXR [24], with the ultimate goal of supporting commercial 
VR headsets for viewing and interacting with Ranger 
visualizations.  We were able to successfully integrate 
WebXR into Ranger by implementing the following.  

 

• Recognize our HTC Vive [25] VR device and 
start a VR session. 

• Render models in three-space in Ranger for left 
and right eyes and with correct eye separation 
and with shearing terms in the projection matrix 
to build the non-symmetric camera frustums [26] 
needed to eliminate image distortion. 

• Recognize VR device position and orientation (6 
degrees of freedom). 

• Recognize two controller’s position and 
orientation and render a 3D representation of the 
controllers in the scene. 

• Support ray intersection for each controller for 
selection/picking in the 3D scene. 

• Ability to move freely in the scene via controller 
gestures. 

•  

We did encounter challenges during VR development in 

Ranger, as WebXR was relatively new and documentation 

and code examples were not as readily available as we would 

have liked, plus the only web browser that supported WebXR 

was Chrome 66 and later versions. For the HTC Vive 

controllers, WebXR always returned the same event code no 

matter which button was pressed on a given controller, so in 

essence, we were limited to a single button per controller. 

Button press events were unique across the two controllers. 

Regarding interaction with the rendered scene, we 

implemented both scene translation and scene scaling based 

on controller gestures and a controller button press. Overall, 

rendering performance for our solar system-scale 

visualizations was good and frame rates were high enough 

that no users experienced nausea or dizziness during use. 

VIII. CONCLUSION  

The JPL developed Ranger, web browser-based 
visualization system has been developed as a high-
performance, easily re-configurable and cost-effective 
visualization system for displaying flight mission and robotic 
system data for use by mission development engineers and 
operations personnel. Because the Ranger system has been 
designed to be multi-mission and extensible, user provided 
physics-based simulations, telemetry processing and data 
analytics software can be integrated into the system to provide 
value-added capability to assess, predict and report vehicle 
health, status and the safety during testing and operations, and 
in the context of the mission flight rules and the surrounding 
environment. In addition, the Ranger team emphasizes system 
accuracy during development to ensure that computed and 
displayed mission data is accurate and correct and verified 
through extensive regression and integrated system testing 
and with input and data provided by flight and robotic mission 
domain experts.  

Future work will focus on further reducing application 
development time as well as providing support for tight 
integration with the JPL Mission Operations Division 
software suite. Additional work will continue regarding user 
interface design, including VR/AR for use in mission 
operations. 
 

 
Figure 8. Stereo renderings from immersive VR development 
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