Slow and fast motion of landslides along California Highway 1
from UAVSAR and Satellite SAR analysis
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Landslides along CA 1
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Landslides along CA 1

BT - Wills et al. 2001

Gray Slip - 1988
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Figure 6. Aerial view of the McWay slide of 193.’ Shoto by

Lynn Harrison, Caltrans



Landslides along CA 1

April 5, 2006

March 17, 2011
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https://sanfrancisco.cbslocal.com/

Landslides along CA 1

A coastline in |

motion, a road @ Landslides
: - Road

under Slege closures
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collapsed bridge, Pfeiffer Canyon

Highway 1 is still Bridge (under
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onterey
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Landslides along CA 1

Pfeiffer Canyon Bridge Winter 2017
N\ ‘ \ \

Stan Russél\ CalTrans
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Pleiter
March 8 o

David Royal, Associated Press



Landslides along CA 1
Paul’s Slide Winter 2017
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Landslides along CA 1
: ,;"'-"’/’Mud Creek

Brian Mack
Published on May 22, 2017

https://www.youtube.com/watch?v=GCSimHiFNDA



https://www.youtube.com/channel/UCiy1fg7g1KzBGJAhH3lqRhw

Landslides along CA 1
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Understanding Plate Dynamics
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Tectonics

 Santa Lucia Mountains

» Compressional
deformation related to San
Andreas and San Gregorio

« Uplift rates ~ 0.8 mm/yr

(Ducea et al., 2003; Johnson et al., 2018)

Big Sur Coastline
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Big Sur Coast

Precip. =1 m/year
* 80% between Oct & May

» Coastal retreat rates ~0.3
m/yr

(Ducea et al., 2003; Hapke and Reid, 2007)
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Northern California Coast Range
Drought Maps
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http://droughtmonitor.unl.edu/

* Historic drought 2012 - 2015

* Transition from historic drought to extreme rainfall

 Rapid shifts in precipitation



Atmospheric Rivers
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https://phys.org/news/2017-02-atmospheric-rivers-thought.html

* Large changes in rainfall driven in part by atmospheric rivers

* 30-50% of rainfall in California is delivered by landfalling
atmospheric rivers (Dettinger et al., 2011)




Atmospheric Rivers

Distribution of Landfalling Atmospheric Rivers on the U.S. West Coast
(From 1 Oct 2016 to 31 March 2017)

AR Strength AR Count* * 45 Atmospheric Rivers have made landfall on the West Coast

Weak 11 thus far during the 2017 water year (1 Oct. — 31 March 2017)
* This is much greater than normal

* 1/3 of the landfalling ARs have been “strong” or “extreme”

Moderate 20

Strong 12

50°N
Extreme 3 Wateryear 2017

AR landfall Nov. 28
locations through Dec. 19
Ralph/CW3E AR Strength Scale 31 March 2017 :
B Weak: IVT=250-500 kg m™ s7*
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4, A
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March 24§56

Location of landfall represents

position where AR wasstrongest Jan. 8
atlandfall. ManyARsmove
downthecoast overtime. This

map doesnot showthese areas.

*Radiosondes at Bodega Bay, CA indicated
the 10-11Jan AR was strong (noted as

moderate based on GFS analysis data) and 25°N
7-8 Feb AR was extreme (noted as strong)
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Center for Western Weather By F.M. Ralph, B. Kawzenuk, C. Hecht, J. Kalansky
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Northern California Coast Range

Change in Precipitation
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Satellite and Airborne INSAR

Copernicus Sentinel-1 A/B
satellites
* C-band wavelength (5.6 cm)

* Since 2015 data collected every
6-12 days

@ - NASA/JPL Uninhabited Aerial
W™ \Vehicle Synthetic Aperture
' Radar (UAVSAR)

voaton iE T e g St * L-band wavelength
* Since 2009 data collected twice per
year
SAR processing and time series inversion
* InSAR Scientific Computing Environment (ISCE) (Rosen et al., 2012)
* Generic INSAR Analysis Toolbox (GIANT) (Agram et al., 2013)
* Small Baseline Subset (SBAS) method (Schmidt and Birgmann, 2003)



Results

2015-2017

CA Sentinel-1 InSAR time-series

LOS time-series with respect to each reference (ﬁ )
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NASA UAVAR data

Average velocity (2009 - 2017)

EEh
bt 0.04 __
BT —
' - i i\
’ u .‘- ll:.-: ] E
[ ) r > -
- 1 )
N. . 0 8
“ref. pixel " 4| O
i - (4]
LOS Rl 2
*~ . | |j-0.04 — | post-catastrophic

* Landslide was active for a minimum of 8 years prior to
catastrophic failure

Handwerger et al. (2019)



Copernicus Sentinel 21A/B InSAR time series

* Moved downslope 8o cm
between 2015-2017

* Most displacement
occurred near headscarp

* Deformation area larger
than failed area
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Handwerger et al. (2019)



3D Inversion - NASA UAVSAR and Sentinel 1 A/B data

Avgerage velocity and strain rate (2009 - 2017) of Mud Creek landslide, CA

b. vertical strain rate

x103(yr’) .
-2
-1

c. strain rate

Slip localized onto a different sliding surface

Handwerger et al. (2019)
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Sentinel 1A/B T42 Descending
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Sentinel 1A/B T42 Descending

Acceleration
before failure

* Moved 8ocm
downslope

* Max. displacement
occurred near headscarp

* Seasonal motion driven
by precipitation

* Displacement and
velocity scale with
precipitation

® accelerating Extreme rainfall caused

S Y § decelerating large increase in velocity

and potentially led to
I 1 ﬁi |/rate
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Handwerger et al. (2019)



) WY2015 WY2016 WY2017 _  iMay 20,2017 :
—e— Mud Creek :

: catastrophic failure:
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* These landslides occur in the same lithologic unit and in similar
climate

* Landslides display similar velocity pattern during WY2016

* Paul’s slide displays a more ‘typical’ velocity pattern during WY 2017



Sentinel-1 A/B track 42 time series (2015 - 2017)

== Velocity 116
10+ precip. )’ E WY2015
® X BB : @® wy2016| 114
e ! ® wvy2017
| (L JAN
08 - - @ . May20,2017 1.2
® ‘ [ 1 catastrophic failure -
= : =
= c
E ke

How do landslides transition from stable to unstable

sliding?
® :
0?990ugee®” ' 0
Oct Nov Dec Jan Feb Mar Apr May Jun JuI Aug Sep Oct
Month

* Displacement and velocity increase with precipitation
* Divergence from ‘typical’ seasonal velocity pattern duringWY2017 -

It rr
may suggest a transition occu ed Handwerger et al. (2019)



Mud Creek landslide

High pore-water pressures

March 8, 2017
(73 days before failure)

Evidence of high pore-water pressure
* Springs produced darkened areas of soil with downslope seepage

* Water flowing down gullies
* Not caused by overland flow from recent rainfall, because no
precipitation occurred at the site during the previous 2 weeks

Warrick et al. 2019



Stable to unstable sliding
Sentinel-1 A/B track 42 time series (2015 -2017)
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* Mud Creek landslide moved seasonally for a minimum of 8
years prior to its collapse

* Seasonal velocity changes driven by precipitation-induced
changes in pore-water pressure

* Mud Creek shows a divergence from “typical” seasonal
velocity pattern duringWY 2017

* The extreme rainfall of WY 2017 likely caused its ultimate
failure

* Pore pressure increase can overcome mechanisms that act
to stabilize sliding
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