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NOTES FROM THE MEETING

Time to improve bias estimation, possibly with UQ, to improve variance.
Fix CONUS blue dot bug.
Fix RH bug.
Fix long tail bug (note: Berry did not see it, so maybe it’s in my validation?)
CLIMCAPS! (when?)
Berry should do a VPD validation.
Need to meet up with Alireza to get this product into applications.
Should we use more ground truth besides ISD?
How to do a sine wave model and pull in IASI?
Go global
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AIRS (Aqua), CrIS (Suomi NPP), IASI (Metop-A&B)
augmented with MW sounders

Future missions 
US: Joint Polar-orbiting Satellite System (JPSS)

JPSS-1 launched in 2017. JPSS mission series planned
Europe: Metop-C will launch in November 2018. SG mission series planned.

A network of infrared sounders
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AIRS Success Led to Numerous Operational Sounders Worldwide
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AIRS IR radiance product accuracy estimates provided to the Global Space-based Inter-Calibration of Sensors 
(GSICS).  AIRS is an in-orbit intercalibration reference sensor for GSICS.

Slide: Tom Pagano



j p l . n a s a . g o v

• Start seeing these instruments as a network of information providers
• We need good uncertainty estimates to do good science!

• Spatial statistical data fusion (SSDF, Nguyen et. al., 2012) 
• can fuse M estimates of the same process (sparse, incomplete OK)
• Produces estimates in data gaps
• Requires estimates of bias and variance for each data set
• Quantifies uncertainty in the fused product 

How to optimally utilize this information?
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Eastern US: delivered
8 months: [Jan, Apr, Jul, Oct] x [2013, 2015]
Fusion done on a daily basis, separately for day & night, 0.5° output grid

AIRS v6 IR+MW support product
CrIMSS CHART IR+MW
DQ 0, 1

1. Estimate bias and variance of AIRS and CrIMSS data, vs. NOAA ISD truth
a. Matchup criteria: 45 km, ±30 minutes (ISD is typically every 15 minutes)
b. Bias, variance estimates made in 2-degree hexagonal bins, 3-day averages

2. Perform data fusion with pySSDF
3. Validate fused result

Fusion of AIRS + CrIMSS CHART near-surface temps
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14k active stations globally
https://www.ncdc.noaa.gov/isd

NOAA ISD
Integrated Surface Database
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https://www.ncdc.noaa.gov/isd
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• Generalization of optimal interp. (kriging). Nguyen et al. 2012, 2014, 2017 
• SSDF accounts for heterogeneities in input data with a spatial statistical model relating 

the true quantity of interest at a particular location, and all the observations at all 
locations from all data sources 

• estimate bias and variance of each input data set relative to ground truth
• subtract bias from each data set
• make optimal (minimum RMSE) estimates of a process of interest (i.e. 

temperature) from spatial data by accounting for spatial dependence structure
• best linear unbiased estimates: standard errors are guaranteed to be smallest possible 
• estimate at new location a function of data covariance matrix (correlation between 

observed data points) and prediction covariance vector (correlation between observed 
data points and new location) 

• variance informs the weighting of the various input data sets 
• converge on optimal estimate using expectation-maximization algorithm

SSDF – spatial statistical data fusion
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fast: 2 hours to fuse all 8 months of NST on one core on weather

Sample of delivered Eastern CONUS results: NST
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Sample of delivered Eastern CONUS results: NSRH
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Sample of delivered Eastern CONUS results: VPD
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VPD = humidity.esat(NST+273.15)/1000.*(1.-NSRH/100.) in kPa

VPD of 0.5-1.2 kPa “OK”   Too lowàmold Too highàwater stress
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Drought Early Detection

RH:    Farahmand et al 2015

VPD and T:       Behrangi et al 2015

• Relative Humidity, Temperature and Vapor Pressure Deficit can potentially detect 
drought onset earlier than other indicators for up to two months 

Also:
Fire risk assessment
Agricultural applications

Slide: Alireza Farahmand
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Preliminary results: 2015 Jan, Q==0
V6 IR V6 IR +MW

NSAT

NSRH

38

Fusion
slide: Berry Wen 
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Not bad, but room for improvement
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monthly

bias airs: 0.62
bias chart: 0.58
bias fused: 0.14

std airs: 2.55
std chart : 2.93
std fused: 2.56

7-day

bias airs: 0.63
bias chart : 0.57
bias fused: 0.12

std airs: 2.56
std chart : 2.94
std fused: 2.45

3-day

bias airs: 0.62
bias chart : 0.58
bias fused: 0.13

std airs: 2.56
std chart : 2.94
std fused: 2.25

Mean values over all 8 months



j p l . n a s a . g o v

Preliminary sample of full CONUS: NST
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Preliminary sample of full CONUS: NSRH
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Preliminary sample of full CONUS: VPD
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Initial attempt to elevation-adjust NST matchups failed
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regular ISD shifted along dry adiabat according 
to elev. differences with sat. matchups
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Eastern CONUS AIRS+CHART NST, NSRH, VPD delivered.
Significantly reduces bias; variance reduced but room for improvement
Produces estimates even over data gaps
Produces uncertainty estimates.
Fusion calculation is fast.

Full CONUS products are under development.
Applications (drought, fire, agriculture, vector-borne disease)
Explore potential for kriging or UQ to improve bias and variance inputs

Switch to CLIMCAPS! And make this a real product.

Summary
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extra slides
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3-day averages (day / night separate), 2° hex grid
Sample biases and variances
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Sample biases and variances
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Perform matchups: gridded data fusion output, with ISD
some fused output matchups also to either AIRS or CrIS datum
other fused output falls in “gap” areas

Validation
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No Gaps No Gaps
January 2013, day January 2013, night

Peter Kalmus
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Validation
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With Gaps With Gaps
January 2013, day January 2013, night

Peter Kalmus



j p l . n a s a . g o v

Bias of all matchups (over the 8 months of data)
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excludes input 
data gaps
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bias of all matchups, including gaps
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Fusion is capturing ~60% of the uncertainty (1.6-1) 
Also, there are a few really bad estimates that must be chased down!

Validation of uncertainty
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January 2013, day
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Vapor pressure deficit and fire
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Fixed Rank Kriging (FRK) vs. SSDF

Method outline

1. Compute the bias and measurement error of each dataset
relative to validation data,

2. Compute the estimates as linear combinations of all the
observed data points, subject to unbiasedness and
minimum-error constraints,

3. Parametrize the underlying covariance function using the spatial
random e↵ects model,

4. Estimate the spatial dependence parameter using the
Expectation-Maximization algorithm,

5. Produce the estimates (best linear unbiased predictors) and their
associated uncertainty.

4
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Model assumptions

We assume the data from instrument i are generated according to

the following model:

Zi = (Zi (si1),Zi (si2), . . . ,Zi (siNi ))
0,

Zi (sij) = Y (sij) + ✏i (sij);

Y (sij) = S(sij)⌘;

where

I Zi is the vector of response variable from dataset i ,

I Y (·) is the true process,

I ✏i (Bij) is the error process.

1
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Model assumptions

We can rewrite the data models in vector forms as

Z1 = Y1 + ✏1

Z2 = Y2 + ✏2,

Or, equivalently, we can simplify the problem by stacking them as

follows,

✓
Z1

Z2

◆
=

✓
Y1

Y2

◆
+

✓
✏1
✏2

◆
,

or equivalently,

Z = Y+ ✏.

2
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Prediction equation

Under this formulation, the (linear unbiased) optimal interpolation

can be written as

Ŷ (s) = a0Z

where a is a N-dimensional vector of kriging coe�cients at location s.

3
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Minimization conditions

We wish to find the vector a that minimizes,

E (Y (s)� Ŷ (s))
2
= var(Y (s)� a0 Z),

= var(Y (s))� 2a0 cov(Z,Y (s)) + a0 var(Z) a, (1)

with respect to a, subject to the unbiasedness constraint,

1 = a01,

where the spatial dependence between the data points are captured

within our parameterization of cov(·, ·).

4
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