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Motivation
Introduction
• Slow-moving (~m/yr) landslides govern erosion and landscape 

evolution and pose a major hazard
• Move during seasonal wet periods when infiltrating precipitation 

increases the pore-water pressure within the landslide body.
Research Questions
How do slow-moving landslides respond to changes in rainfall? 

• Velocity changes in response to changes rainfall (i.e. pore 
pressure)

• Slow down during periods of drought and speed up during wet 
periods

Photo by Roering



California Coast Ranges

Eel River Catchment
• High erosion rates ~ 

0.9 mm/yr
• Precip. ~ 1.7 m/year
• 80% between Oct & 

May

Average Precipitation (1981 – 2010)

Data 
from 
PRISM

Lithology and Tectonics

Tectonics
• Uplift rates ~ 1 mm/yr

Lithology
• Franciscan 

mélange 
• Clay-rich
• Mechanically 

weak

(Jennings, 1977; Lock et al., 2006;Wheatcroft and Summerfield, 2005)



Eel River landslides
• Large (> 400 m long)
• Deep-seated (> 3 m)
• Slow moving (< 4 m/yr)
• Distinct kinematic zones 
• Sliding along basal and lateral faults

Slow-moving landslides
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• Seasonal velocity 
changes

• Driven by 
precipitation-induced 
changes in pore-water 
pressure

ALOS-1 
time 
series

Seasonal Kinematics: 2007-2011 Handwerger 
et al., 2013

10 slow-moving landslides

(Terzaghi, 1951; Iverson and Major, 1987)



Long-term kinematics: 1944-2015

• Avg.velocity
decreased due to 
long-term moisture 
deficit

• PDSI uses 
temperature and 
precipitation to 
estimate relative 
dryness. 

• PDSI may serve as 
proxy for pore-water 
pressure
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Bennett et al., 2016

10 slow-moving landslides



Northern California Coast Range

• Historic drought 2012 - 2016

• Transition from historic drought to 
extreme rainfall

• Rapid shifts in precipitation

Drought Maps
Oct 2014 Oct 2015 Oct 2016 Oct 2017 Oct 2018Oct 2013Oct 2012

How will landslides respond to changes in precipitation?



Water Year (Oct 1 – Sep 30) Precipitation Maps

A’

A

B’
B

A’A

B’B

Data from 
PRISM

Handwerger et al. 
(in review) 

• 1.8 m in 2016
• 2.3 m in 2017
• 1.1 m in 2018

Kekawaka Creek precipitation



InSAR and Pixel Offset Tracking

• 8 scenes between April 2016 and February 
2018

• 4 different flight paths
• 112 InSAR pairs and 112 pixel offset pairs

SAR processing and time series inversion
• InSAR Scientific Computing Environment (ISCE) 

(Rosen et al., 2012)

• Generic InSAR Analysis Toolbox (GIAnT) (Agram et al., 
2013)

NASA/JPL Uninhabited Aerial Vehicle Synthetic 
Aperture Radar (UAVSAR)



Results

Landslide Inventory

• 312 landslides between April 2016 and 
February 2018

• 102 previously unmapped landslides
(new or reactivated)

Additional landslide inventories
(Mackey and Roering, 2011; Handwerger et al., 2015; Bennett et al., 2016)



Results

120 active landslides
07 Apr 2016 - 04 Oct 2016

312 active landslides
04 Oct 2016 - 30 Oct 2017

146 active landslides
30 Oct 2017 - 09 Feb2018

07 Apr 2016 - 04 Oct 2016 04 Oct 2016 - 30 Oct 2017 30 Oct 2017 - 09 Feb2018

N

20 km

Eel River

South Fork 
Eel River

Van Duzen River

KJf Franciscan 
Complex, unit 1

Eel River

N

5 km

To 
Paci!c 
Ocean

Landslide Inventory mapped with NASA UAVSAR

• Large change in landslide activity over a short time period



• Seasonal velocity changes 
driven by precipitation

• Increased velocity during 
the wet season of WY2017

• PDSI - transition from dry 
to wet conditions during 
WY2017

Results

median

Apr - Oct Mar - Oct

Pixel offset time series (51 landslides)



thickness ∝ width 
(Hovius et al., 1997)

Pixel offset time series (51 landslides)

thickness ∝ area 
(Handwerger et al., 2013; Simoni et al., 2013)

Results

•96 % of landslides had 
increased velocities due to 
extreme rainfall

•Up to ~6x increase in velocity 
during WY2017

•Stronger response for smaller 
and thinner landslides

Handwerger et al. (in review) 



Discussion

Schulz et al. 2018

Two Towers landslide

• Larger pore pressure changes for thinner 
landslides

• PDSI can describe pore pressure changes      
(in some cases)
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• Novel UAVSAR dataset to map and monitor landslides
• Widespread, but short-lived, triggering/reactivation of slow-moving 

landslides due to large increase in rainfall (i.e. pore-water pressure)
• Smaller and thinner landslides are more sensitive to changes in 

rainfall
• stronger pore-water pressure changes

• PDSI may serve as a proxy for pore pressure and may be a useful 
tool to predict landslide motion 

How will slow-moving landslides respond to future climate 
change? 

• Precipitation extremes may lead to drastic changes in landslide 
behavior

Summary
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