Rapid response of slow-moving landslides to extreme rainfall
following historic drought in California
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Motlvatlon

Slow-moving (~m/yr) landslides govern erosion and landscape
evolution and pose a major hazard

Move during seasonal wet periods when infiltrating precipitation
iIncreases the pore-water pressure within the landslide body.

i % Research Questions

* Velocity changes in response to changes rainfall (i.e. pore
pressure)

Slow down during periods of drought and speed up during wet
penods
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Lithology and Tectonics
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Eel River Catchment

- High erosion rates ~

0.9 mm/yr

|+ Precip.~1.7 m/year
« 80% between Oct &

May



Slow-moving landslides

Eel River landslides

« Large (> 400 m long)
Deep-seated (> 3 m)
Slow moving (< 4 m/yr)

Distinct kinematic zones
Sliding along basal and lateral faults



Seasonal Kinematics: 2007-2011 al 2013

10 slow-moving landslides
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« Seasonal velocity
changes

 Driven by
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changes in pore-water
pressure

(Terzaghi, 1951; Iverson and Major, 1987)



Long-term kinematics: 1944-2015 Bennett et al., 2016
10 slow-moving landslides
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Northern California Coast Range

Drought Maps
Oct 2012 Oct 2013 Oct 2014 Oct 2015 Oct 2016 Oct 2017 Oct 2018

T
3

4
Eald

D1 Moderate Drought - D4 Exceptional Drought s
4D D2 Severe Drought http://droughtmonitor.unl.edu/
20} Heo | _ _
< \p’eif" L » Historic drought 2012 - 2016
oI S N y i 10 §
=10 \ , » Transition from historic drought to
N | .
05| N R s extreme rainfall
0 -4

2012 2013 2014 2015
Water Year

* Rapid shifts in precipitation



Water Year (Oct 1 — Sep 30) Precipitation Maps
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NASA/JPL Uninhabited Aerial Vehicle Synthetic
Aperture Radar (UAVSAR)

» 8 scenes between April 2016 and February
2018

« 4 different flight paths
* 112 InSAR pairs and 112 pixel offset pairs

SAR processing and time series inversion

* InSAR Scientific Computing Environment (ISCE)
(Rosen et al., 2012)

* Generic INSAR Analysis Toolbox (GIANT) (agram et al.,
2013) - -

ing an airborne radar to study earth science (earthquakes, volcanoes,
vegetation, hydrology, ice, etc.), with emergency response potential

KJf Franciscan
Complex, unit 1

azimuth + look
direction
T06508: —~

T24500: “\
T15801: \

T33805: \
20 km




Results

”UAVSAR 133805
Landslide Inventory

« 312 landslides between April 2016 and
February 2018

* 102 previously unmapped landslides
(new or reactivated)
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Results

120 active landslides 312 active landslides 146 active landslides
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Pixel offset time series (51 landslides)
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Pixel offset time series (51 landslides)
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Discussion
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 Larger pore pressure changes for thinner

andslides
* PDSI can describe pore pressure changes

(in some cases)




8, ¢

=

“lf.
)

i ,;Avf\'(}vs ," > '-".'1:.0
7 A B

S i . SR TERY R i e

.A‘»‘

* Novel UAVSAR dataset to map and momtor Iandsllde's
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* Widespread, but short-lived, triggering/reactivation of slow-moving
landslides due to large increase in rainfall (i.e. pore-water pressure)

=+ Smaller and thinner landslides are more sensitive to changes in
= rainfall

* stronger pore-water pressure changes
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<« PDSI may serve as a proxy for pore pressure and may be a useful
tool to predict landslide motion
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* Precipitation extremes may lead to drastic changes in landslide
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