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ABSTRACT 

 

Currently, the community lacks capabilities to assess and 

monitor landscape scale permafrost active layer dynamics 

over large extents. To address this need, we developed a 

concept of a remote sensing based Soil Inversion Model for 

regional Permafrost (SIM-P) monitoring. The current SIM-P 

framework includes a satellite-based soil process model and 

a soil dielectric model. We are also working on 

incorporating a radar scattering model for Arctic tundra into 

the SIM-P framework. A unified soil parameterization 

scheme was developed to harmonize key soil thermal, 

hydraulic and dielectric parameters in the soil process and 

radar models that can be used in the joint soil-radar 

inversion framework. The soil parameter retrievals of the 

SIM-P framework include soil organic content (SOC) and 

active layer thickness (ALT). Initial tests of SIM-P using in-

situ soil permittivity observations showed reasonable 

accuracy in predicting site-level SOC and soil temperature 

profiles at an Alaska tundra site and ALT in Arctic Alaska. 

SIM-P will be further tested using airborne P- and L-band 

radar data collected during NASA’s Arctic Boreal 

Vulnerability Experiment (ABoVE) to evaluate the 

sensitivity of longwave radar to active layer properties.  

 

Index Terms— permafrost active layer, soil 

freeze/thaw, radar inversion, soil dielectric constant 

 

1. INTRODUCTION 

 

Regional warming in the northern high latitudes is occurring 

at roughly twice the global rate, leading to widespread soil 

thawing and permafrost degradation [1].  Regional warming 

and soil thawing may expose vast permafrost soil organic 

carbon (SOC) stocks to mobilization and decomposition, 

which may promote large positive climate feedbacks [2]. 

The timing, magnitude, location, and form of this permafrost 

carbon feedback (PCF) remain highly uncertain due to many 

poorly understood mechanisms that control permafrost thaw 

and subsequent SOC decomposition [3].  

     Understanding the linkages between soil active layer 

changes and PCF is hampered by a lack of consistent spatial 

and temporal information on active layer conditions over 

regional extents. Detailed process models have been widely 

used to simulate soil freeze/thaw (F/T) and permafrost 

dynamics [3-4]; however, regional extrapolation of these 

models is hampered by multiple factors including large 

uncertainties in surface meteorology drivers, deficient 

representations of surface heterogeneity and the processes 

controlling permafrost dynamics [5]. Other models provide 

an intermediate level of complexity by relying on a 

simplified process logic utilizing satellite remote sensing 

observations as key model drivers, which can be effective in 

mapping permafrost extent and active layer dynamics [6-7]. 

However, these assessments are also limited by the coarse 

resolution of global satellite records, and a lack of direct 

sensitivity to active layer properties needed for model 

parameterization and calibration. 
Capabilities for direct remote sensing of soil active layer 

at fine spatial resolution over large scales are still lacking. 

Low frequency synthetic aperture radar (SAR) remote 

sensing offers a promising method for such direct 

observations [8-9]. However, SAR remote sensing of active 

layer conditions is hampered by the underdetermined nature 

of radar backscatter, which can be sensitive to a large 

number of variables in Arctic-boreal landscapes such as 

snow, ice and vegetation cover [9-11]. The use of multiple 

radar frequencies and polarizations may reduce uncertainties 

in the radar inversions, leading to better active layer retrieval 

accuracy. Extensive coordinated, albeit non-simultaneous, 

airborne L- and P-band radar backscatter data were collected 

during the recent Arctic Boreal Vulnerability Experiment 

(ABoVE) campaigns. Retrievals of critical active layer 

properties from these observations may enable enhanced 
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model parameterization and refinement for landscape level 

mapping and monitoring of active layer conditions.  

In this study, we developed a concept of a remote 

sensing based Soil Inversion Model framework for 

Permafrost (SIM-P). SIM-P is based on our previous model 

development, including a satellite-based soil process model 

[6-7], and a soil dielectric model [12]. A radar scattering 

model for Arctic tundra [9] will be also incorporated into the 

SIM-P framework for joint soil parameter retrieval including 

SOC and ALT.  

 

2. DATA AND METHOD 

 

2.1 Study area and in-situ data 

 

Our study area is Arctic Alaska (>66.55°N, Fig. 1), where 

multiple in-situ datasets were available to develop and test 

the SIM-P framework. Airborne P- and L-band radar data in 

the Alaska North Slope were collected in August and 

October of 2014/2015, and in May/June and 

August/September 2017 during the ABoVE Campaign [9]. 

 
Fig.1 Study area (Arctic Alaska, >66.55° N) and locations of in 

situ sites used for SIM-P calibration and validation. The airborne 

SAR flight lines used in this study are shown as green swaths.  

 

     Three in-situ datasets were used for model calibration 

and validation, including half-hourly soil dielectric constant 

(ɛ) and temperature (Tsoil) measurements from a Soil 

moisture Sensing Controller and oPtimal Estimator 

(SoilSCAPE) site; 3-hourly ɛ and Tsoil measurements from 

Global Terrestrial Network for Permafrost (GTN-P) sites, 

and ALT measurements from Circumpolar Active Layer 

Monitoring (CALM) network. The SoilSCAPE Tsoil and ɛ 

measurements were obtained from different depths (0.05, 

0.15, 0.35, 0.56 m) of a wireless sensor network deployed 

near Prudhoe Bay, Alaska (70°13'47''N, 148°25'19''W) in 

2016. SoilSCAPE ɛ was measured using a METER TEROS 

12 soil moisture sensor operating at 70 MHz, while ɛ at the 

GTN-P sites was measured using Stevens Hydra Probe 

sensor at 50 MHz. ɛ is mainly affected by soil texture, 

moisture and organic fraction, which are also key factors 

affecting soil thermal and hydraulic properties [13-14]. ɛ is a 

better indicator of soil F/T state than Tsoil, which is directly 

sensing to soil liquid water changes (Fig. 2).   

 
Fig. 2 The in-situ soil temperature (a) and dielectric constant (b) 

vertical profiles at the Prudhoe Meadow SoilSCAPE site.  

 

2.2 The baseline radar ALT retrieval algorithm  

 

Multiple soil parameters, including ALT and soil moisture 

(converted from soil dielectric constant), were derived from 

P-band polarimetric SAR (PolSAR) data obtained in late 

August and early October [8-9]. The baseline algorithm uses 

a three-layer dielectric structure and retrieves the 

corresponding dielectric constants using the time series SAR 

data. In August, the three layers represent the surface thawed 

layer, middle and bottom active layer, and the top of the 

upper permafrost layer. In October, the two surface layers 

represent a partially frozen active layer with a frozen surface 

layer overlying a deeper unfrozen active layer. An iterative 

optimization scheme was used to estimate the soil 

parameters by minimizing differences between the observed 

SAR backscatter and radar scattering model simulations:  

    

                                                                                           (1) 

 

where X represents the unknown subsurface parameters to 

be retrieved, including the thickness and soil dielectric 

constant of each layer.  and  represent the 

calculated and observed radar backscatter, respectively, at 

frequency f, and polarization pp (HH or VV).        

 
Fig. 3 The P-band radar retrievals using the baseline algorithm for 

the flight lines in northern and western Alaska. The purple (blue) 

symbols represent sites where the in-situ ALT is larger (smaller) 

than the P-band sensing depth (~ 50 cm) [9].     

 

    The baseline algorithm retrievals exhibit favorable 

performance (Fig. 3) compared to collocated CALM 

measurements with ALT up to ~50 cm (bias < 4 cm), but 

underestimate deeper active layers (bias ranging from -7 to -

23 cm) when in-situ ALT is deeper than the P-band sensing 

 



depth (~50 cm). The baseline algorithm is also 

underdetermined with more unknowns than observables, leading 

to ambiguity in radar retrievals [9]. 

 

2.3 The SIM-P framework for active layer retrievals 

 

To reduce the ambiguity in the radar inversions, we will 

introduce additional physical constraints to the radar 

scattering model imposed by a soil process model [6-7]. 

Both models share many physical parameters that are 

required to represent the soil thermal, hydraulic and 

dielectric properties unique to the permafrost-affected 

environments. Therefore, we first developed a unified 

organic soil parameterization [12] that can link the soil 

process model with the radar scattering model. The soil 

process model can provide initial estimates of key variables 

including active layer F/T state and soil moisture (SM), 

which can be used to estimate the initial soil dielectric 

profile (key inputs to the radar model). The optimized SOC 

by the radar model can then feed back into the soil process 

model, reducing the uncertainties in the estimated dielectric 

profile. So we can impose joint physical constraints on both 

models and reduce the ambiguity in the radar inversions.  

     A SIM-P framework was designed to implement the 

above ideas (Fig. 4). The current SIM-P framework includes 

a satellite-based soil process model [6] and a soil dielectric 

model [12]. The soil process model was developed based on 

a detailed permafrost hydrology model [4], but has a flexible 

structure to exploit remote sensing observations including 

land surface skin temperature (LST), snow cover extent 

(SCE), and SM as key model drivers and for model 

parameterization. Multiple soil parameters can be solved 

iteratively through using in-situ soil dielectric and 

temperature measurements using the following cost function:  

 

                                                  (2) 

where w1 and w2 represent the weights for Tsoil and ɛ cost 

function, n1 and n2 are the number of Tsoil and ɛ 

measurements. The Tsoil error was normalized using the 

standard deviation of in-situ Tsoil (σ). The simulated 

annealing algorithm [15] was used for the parameter 

optimization. The boundary conditions were set as the 

surface air temperature and the deepest layer depth of Tsoil 

measurements. The initial Tsoil profile at the beginning time 

step of the model was interpolated from the in-situ data. 

     Our ultimate plan is to develop a joint soil-radar 

inversion framework as discussed above, and we are 

currently working on incorporating the radar scattering 

model [8-9] into the SIM-P framework (Fig. 4). After 

implementing this, SIM-P will be able to ingest 

airborne/satellite radar backscatter data to optimize multiple 

active layer parameters including ALT, SM and SOC using 

an iterative solution. We will test the framework using the P- 

and L-band radar data collected from our pre-ABoVE and 

ABoVE airborne campaign. 

 

Fig. 4 Processing flow for the remote sensing based Soil Inversion 

Modeling framework for regional Permafrost monitoring (SIM-P).  

   

3. RESULTS 

 

We tested the SIM-P model at the two nodes (S5 and S6) of 

the Prudhoe meadow SoilSCAPE site, where detailed Tsoil 

and ɛ measurements were available. The model was run 

during the 2017 thaw season (DOY 150-270), where enough 

measurements were available to constrain the inversion. The 

two nodes show similar ɛ profiles during the thaw season, 

but with very different soil temperatures (>5° C difference at 

5 cm depth, Fig. 5 a-b). 

 
Fig. 5 Model test at the Prudhoe Meadow site: a) in-situ Tair vs 

T_5cm at two SoilSCAPE nodes (S5 & S6); b) in-situ ɛ profile; c) 

Model optimized vs in-situ SOC profile; d) Model optimized soil 

porosity and soil thermal conductivity (k) profile at S6 node.  

 

     The model shows overall higher SOC content in the two 

surface layers (5-15 cm), compared with the two deeper soil 

layers (30-56 cm) at both nodes, consistent with in-situ data 

(Fig. 5c-d). The in-situ Tsoil at S5 node was much lower than 

Tsoil at the S6 node; therefore, the model shows overall 

higher surface SOC at the S5 node, different from the in-situ 



data. However, the in-situ SOC measurements at this site 

were associated with large uncertainties with only 2 

measurements collected along the soil profile. We collected 

additional soil samples along the Dalton Highway transect in 

the 2018 summer (with more samples along the profile), 

which will improve the model evaluation. In addition, the 

model simulated Tsoil has a mean RMSE less than 1.5 °C for 

soil depths from 5 cm to 35 cm.  

     The soil model was evaluated using regional ALT 

measurements across Arctic Alaska spanning the period 

from 2001 to 2016 (Fig. 6). The model slightly 

overestimates ALT compared with in-situ data from 32 

CALM sites, with a mean bias of 10.0 ± 13.2 cm (~20% of 

mean ALT), and mean RMSE of 15.6 ± 7.7 cm. More than 

70% of the sites show significant (p<0.1) correlations 

between the in-situ and model simulated ALT. 
Fig. 6 Comparisons 

of soil model 

simulated versus 

observed mean ALT 

from 32 CALM sites 

ranging from 2001 to 

2016. 

 

 

4. DISCUSSION 

 

One major uncertainty in the current SIM-P framework is 

from the soil dielectric modeling. The model simulated soil 

dielectric constant profile is generally different from in-situ 

data, mainly due to uncertainties in the estimates of soil 

moisture content and the ratio of free to bound water for 

different soil types [12-14]. The radar backscatter and ɛ are 

mostly sensitive to changes in the soil unfrozen water 

content; a reliable soil dielectric mixing model particularly 

during the F/T transitional season will be critical to obtain 

useful information on the active layer properties using multi-

temporal radar measurements. On the other hand, the current 

soil process model does not calculate the soil water balance; 

instead, it uses the remote sensing based SM product. 

Current satellite-based SM products generally have 

difficulty capturing SM changes in the northern high 

latitudes partly due to insufficient representation of organic 

soils in the algorithms. Therefore, we will replace the soil 

process model with a fully coupled permafrost hydrology 

model [4], to better represent the rapid drying and wetting 

phenomena generally observed in surface organic soils.  

     We initially tested the SIM-P framework using only in-

situ Tsoil and ɛ measurements, while more modeling 

experiments are needed to examine the sensitivity of P-and 

L-band radar backscatter to soil active layer properties. 

Long wavelength radar, including P-band and L-band, is 

sensitive to vegetation structure, and soil surface and 

subsurface dielectric properties [10,14]. Our model 

experiments and analysis using in-situ soil dielectric 

measurements [7] also indicated potential SAR applications 

for mapping SOC and F/T profiles. However, vegetation 

also has a large impact on the radar backscatter, so that 

distinguishing soil and vegetation contributions to the radar 

signal remains a challenge. Multi-frequency SAR 

measurements may reduce uncertainties in the radar soil 

parameter retrievals by providing contributing information 

on surface snow, soil, and vegetation conditions [8-11]. 
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