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Abstract— Mars rover operators have traditionally controlled 
the execution of behaviors using meticulously compiled 
“master” sequences that enforce deterministic timing and 
ordering of activities. While the approach is effective at 
managing risk and complexity, it can be inefficient. 
Determinism demands conservatism in all things and is 
mitigated only at the cost of fidelity in ground modeling of flight 
behavior, an elusive goal. Direct manipulation, as well as 
inspection by mission operators of the automation layers used to 
build a schedule, is both feasible and time-consuming. The Mars 
2020 rover mission plans to introduce a fundamentally different 
high-level scheduling and execution approach. Atomic activities 
are constrained by operators in time, resource usage, and a 
structure of state dependencies, from largely reusable first 
principles. The rover flight software will create and re-create a 
schedule of activities, responding to available energy, actual 
activity durations and execution status, observed temperatures, 
and other on-board state. The solution space of possible 
schedules is prohibitively large and probabilistic. Direct 
manipulation and inspection of automation are no longer 
possible on the shortened tactical timelines envisioned for the 
mission. Schedules are permitted and expected to change 
substantially as execution burns down the plan. Emergent 
behavior is accessible depending on the interaction of a given 
formulation of the plan with actual on-board state. The 
architecture must anticipate and provide capabilities in the 
flight software and/or ground tools to help steer emergence. It 
must leverage the facilities of a highly inherited system to the 
greatest extent feasible. It must function in that small sliver of 
computational capacity available in an already diminutive 
processor, lest it cannibalize from executing activities the 
efficiency it seeks to gain. This paper discusses the challenges 
and considerations in systems engineering the first planned 
autonomous high-level activity planner on Mars. 
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1. INTRODUCTION 
The Mars 2020 Flight System capability discussed in this 
paper, known as On-Board Planner (“OBP”), is part of an 
end-to-end mission capability known as Simple Planner 
(“SP”). SP is intimately linked with changes to Mars 2020 
mission processes intended to nearly halve the time it takes 
to generate the schedule of activities for one or more Martian 
days, or Sols, of operations. This in turn is aimed at 
increasing the productivity of the mission by enabling 
continuous synchronization of Mars execution and Earth 
planning cycles.  

OBP is a capability of the Mars 2020 Rover Compute 
Element (“RCE”) Flight Software (“FSW”) to derive from a 
set of inputs and execute a schedule of activities. OBP was 
conceived primarily as an autonomy layer to improve 
efficiency and as an aid to help offload complexity from 
mission operators in crafting a plan. OBP controls execution 
only while the rover remains nominal and is terminated in the 
event the rover safes.  

A detailed description of OBP algorithms or of the other 
algorithmic approaches used to help create inputs to OBP is 
outside the scope of this paper and is addressed in nascent 
part in [1], [2] and [3]. These approaches are discussed only 
generally, with some attributes or accepted limitations 
abstracted to help explain or justify the system design.  

This paper describes the inefficiencies OBP is attempting to 
address, some challenges the architecture accepts, and the 
approaches to addressing these challenges in the design of 
OBP and SP. Because these are on-going development 
efforts, some of the content described herein is subject to 
change. This paper also represents a high-level summary that 
glosses over technical details without exposing finer 
distinctions.  
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2. FIRST PRINCIPLES OF MARS OPERATION 
Several conventions of Mars operations function as 
constraints that the design of OBP anticipates, and it is 
therefore useful to the understanding of OBP to briefly 
describe them. 

The Activities  

Mars 2020, much like Mars Science Laboratory (“MSL”) 
before it, will spend nearly all of its nominal waking hours 
performing three core classes of activity: (1) remote science 
with a sensing mast; (2) contact and sampling science with 
the robotic arm and sample handling arm; and (3) driving. 
Due to avionics and logistical limitations, these activities are 
not executed in parallel and would indeed assert preventive 
faults if this were attempted, but may be partitioned and 
phased in a myriad of ways. (Engineering maintenance 
activities comprise another class of nominal activity but can 
in many instances be performed in parallel and tend not to 
require significant expenditure of time not already being 
spent awake). Nearly all of these activities require sunlight to 
execute, in some cases of constrained incidence. Extended 
planning operations on Earth similarly are largely confined to 
plausible daylight working hours at JPL, where most 
operators live. 

Power  

Mars 2020 is not quite power positive when its RCE FSW is 
running even in a quiescent state with no discretionary loads, 
but must instead spend nearly 2/3 of its time on Mars with the 
RCE powered off in order to recharge its batteries from the 
thermoelectric generator. To recover the energy needed to 
operate, all but the limbic loads shed and a low-level state 
machine does little more than monitor faults and manage 
warmup heaters while it counts down the time to wake back 
up. The difference in power between these states is 
substantial, a factor of 4 or more. However, the transition is 
not instantaneous. It takes time to go to sleep and more time 
to wake back up. Allowing for the worst cases permitted, 
naps can usually be no briefer than 15 minutes from start of 
shutdown to end of wakeup. 

Like other lithium-ion batteries, the two rover batteries 
degrade if discharged too deeply and are not intentionally 
permitted to dip below 40% state-of-charge (“SOC”). 
Spending lengthy intervals at 100% SOC, at which level 
excess energy is shunted to bleed resistors, is also degrading 
of the batteries. 

Thermal  

Mars 2020 will operate in a sufficiently adverse thermal 
environment that prior to use, its actuators and instruments 
must be pre-heated and continue maintenance heating during 
some or most of a Sol, depending on the Martian season. 
However, in Jezero, as in Gale Crater, there will typically 
always be a period for which no pre-heating is required, at 
least for most of the Martian year. Actuator preheat can take 
minutes to hours depending on environmental conditions. To 

pre-heat all mobility-related heater zones for one hour 
consumes more than 5% of all energy the rover generates in 
a Sol, cannibalizing nearly an hour of awake time that must 
instead be spent asleep.  The coldest temperatures are at 
dawn. The warmest temperatures are at mid-afternoon. The 
actuator no-heat window is centered somewhat later than the 
warmest time of the Sol.  

Mars 2020 will be uploaded new instructions direct from 
Earth (DFE) via the Deep Space Network (DSN) in X-band 
communications passes of at most 30 minutes. These occur 
at approximately the same local time throughout a Martian 
year, at mid-Martian morning when actuator temperatures are 
nearer the coldest than the warmest part of the Sol. When 
operators are able to work every day on Earth, Mars 2020 will 
receive a new plan every Sol. A “plan” is defined here as the 
set of inputs uplinked to the rover in each planning cycle. On 
MSL, the plan also happened to encode one and only one 
fixed “schedule,” or a particular arrangement of activities. 
Unlike planning for the MSL and MER missions, an uplink 
planning cycle on Mars 2020 will be short enough to 
accommodate even the worst-case asynchrony in daylight 
hours between JPL and Mars, which precess with respect to 
each other over a period of approximately five weeks. 
Nevertheless, it is expected that for much of the mission, a 
plan will not be generated on weekends and holidays at JPL, 
and the plan generated on Friday will execute across several 
Sols. 

Telecommunication  

Mars 2020 will transmit all telemetry to relay Mars orbiters 
in UHF communications passes of approximately 20 minutes. 
Those of the sun synchronous orbiters will occur regularly, 
always cycling within a couple hours of mid-Martian 
afternoon and the wee hours of the Martian morning. 
MAVEN with its elliptical orbit will cycle across different 
local times from Sol to Sol. Depending on the mix of orbiters 
still in service or yet to be launched, the partition of their relay 
capacity among Mars surface missions, and the downlink 
needs of Mars 2020, six or more UHF passes in a Sol are 
possible. And Mars 2020 will use all it can get, as it is 
expected to generate significantly more data than MSL did. 
Many activities generate electromagnetic interference with 
some of the signal processing needed to maintain two-way 
communication with the orbiters, while other activities don’t.  

The mid-Martian afternoon passes and any late afternoon 
passes are typically well-situated such that the telemetry 
would be received at JPL prior to starting planning for the 
next Sol. On MSL for single-Sol plans, an average of about 
five hours of higher-value execution time has been available 
prior to this “decisional” pass. Data that is necessary (for 
“ground-in-the-loop” activities) or helpful to inform planning 
of the science or engineering activities for the next Sol’s 
execution must be executed during this time. However, 
activities for which such information is not required can be 
scheduled after the decisional pass and assumed to succeed 
for purposes of planning. Much of the time prior to a 
decisional pass, extending from mid-morning to mid-
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afternoon, requires more heating energy for an activity than 
if executed from mid-afternoon to early evening. 

3. THE INHERITED SYSTEM 
Mars 2020 inherits from MSL nearly all of the same hardware 
with which the RCE FSW interacts and all of the same 
behavioral layers. 
 
Control Interfaces  

All of the science the rover collects is the consequence of 
RCE FSW commands. These commands are discrete encoded 
behaviors of varying scope and abstraction, most of which are 
passed configuring arguments. One command induces a fixed 
voltage across a motor control driver. Another induces a 
motor to ramp up, spin at a fixed speed and ramp down as a 
profiler feeds back to voltage in a control loop. Another 
commands a set of motors to work together to follow a path-
tracking trajectory until some offset from a projected goal 
line is reached. Another kicks off the entire set of Entry, 
Descent and Landing behaviors. Fundamentally, the 
commands are the abstractions of behavior that were 
conceived as being useful or necessary to operate the mission. 
There will be more than a thousand and fewer than ten 
thousand commands in the version of the RCE FSW used for 
the surface phase of the Mars 2020 mission.  
 
To build and execute an activity, such as contact science on a 
target, commands are executed in some relationship to each 
other. Discrete engines allow serial sequences of commands 
to run in a single event-driven context, for which the 
completion of one command triggers the next command in 
that sequence to begin. In other engines, other sequences may 
progress in parallel in their own context. An activity can use 
generations of sequences, one sequence invoking a more 
primitive, possibly reusable child sequence, which might 
function as a meta-command. For instance, one contact 
science sequence could invoke a child sequence to place and 
retract the arm on whatever the currently selected target 
happens to be, which in turn invokes child sequences to open 
and close an instrument cover at certain intended offsets. 
Within this nest of essentially organically variable 
abstraction – the command, the sequence, and the tree of 
sequences – exist all of the behaviors commanded of the 
rover.  
 
The ”Master” Sequence  

On MSL, the root of the tree is the “master” sequence, which 
encodes a schedule and controls the dispatch of “submaster” 
sequences and cleanup activities, using fixed timing that is 
not event-driven. Each submaster is deactivated and cleaned 
up at a later fixed time so as not to endanger the fixed start 
time of the next submaster. MSL does not employ any 
conditional logic in its execution of master and submaster 
sequences, such that not only the timing but also the order of 
execution is fixed. The cleanup, which aborts an activity that 
has overstayed its welcome and establishes some state, is 
dispatched and permitted a worst-case execution time 

regardless of whether the submaster already completed.  
 
This open-loop determinism reduces complexity and limits 
the possibility of emergent behavior. However, it has an 
apparent limitation. If an activity is only permitted to execute 
in a fixed window, and will fault if it exceeds that allocation, 
perhaps failing to achieve the state required by future 
dependent activities, then a duration that is nearly certain to 
be sufficient must be allocated. In practice, a common rule of 
thumb on MSL is 25% greater than the best estimated 
duration. Across ten thousand or more submasters, only a few 
have ever exceeded the allocation using this approach, albeit 
on account of new or uncharacterized behavior. In the interest 
of determinism, shutdown commands are sent at fixed times, 
such that this margin and any conservatism amounts to awake 
time that could have been spent asleep recharging the 
batteries. 
 
Scheduling of a Plan  

A schedule is arranged from a plan at the discretion of an 
operator manually placing a representation of each activity. 
Constructing a skeleton is often relatively straightforward, 
before the saturation of any constraints. Remote science in 
the current location must be placed before the activity that 
drives away. Often a lengthier activity can be placed first, 
driving the structure of the schedule to either side of it.  
 
However, as a schedule grows from that minimum that can 
always be accommodated, choices are made that affect 
efficiency, and the skeleton locks in a certain range of 
outcomes. Activities are grouped into periods of awake time, 
and those with a degree of freedom, like drive distance, are 
tuned. A driving intent is always that sufficient energy exist 
at the end of the plan at “handover” that what’s been 
conceived and modeled as the next plan to come after also 
has sufficient energy, and so on down a chain that goes out 
as far as a week or more at some level of fidelity. To do so, 
MSL operators must project the energy usage of each 
activity, which is a function of the duration of the activity, its 
heating usage, and the consumption of the devices required 
to execute the activity. 
  
Ideally, the plan saturates at some modeled technical 
limitation, such as the SOC at handover to the next plan or 
the amount of time until the decisional pass. However, it can 
also saturate at the level of complexity operators can 
accommodate in the time they have available to create the 
plan.  
 
Existing Autonomy 

While the high-level planning process is largely the manual 
work of human operators, autonomy layers that can impact 
the execution of a plan also exist in the RCE FSW. When a 
behavior wishes to use a resource that is already in use by 
another behavior, autonomy determines whether the conflict 
was unanticipated and ought to result in a declared fault in 
one or both, or whether to delay. Resources include 
multiplexed motor control drivers and a particular 
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electromagnetic or vibration environment. Likewise, if a 
command requires certain state constraints, it will fail if that 
state is not satisfied before attempting any of its encoded 
behavior. For instance, a drill command should not execute if 
the robotic arm had not reached its commanded goal. 
Therefore, drill commands require the state that no robotic 
arm goal error be declared.  
 
This type of autonomy is limited and, in most contexts, was 
intended only to prevent unsafe behavior once a fault has 
occurred. However, these sorts of protections are far from 
comprehensive. For instance, the arm may not have reached 
its position not because it failed a command and declared an 
error, but because an earlier arm sequence was corrupted in 
transmission and therefore did not execute at all. The 
conditional checking of state from within activities, including 
variables set upon successful execution of a dependency 
activity, the existence in memory and execution status of 
sequences, and other context-specific state information can 
inform the extent to which it is both useful and safe to execute 
a dependent activity. 
 
Background Configuration 

Telecommunication windows with myriad configuration 
settings are encoded as table entries and tended strategically, 
typically weeks to months in advance of the pass, as DSN and 
orbiter phasing and availability are coordinated. Sometimes 
passes are deleted tactically. 
 
While survival electrical resistance heating and the control of 
the single-phase loop that distributes heat throughout the 
rover are tended with passive mechanisms like thermostats 

and linear thermal actuators mixing and splitting refrigerant, 
warmup heaters are controlled with another set of table 
entries. For a given zone temperature, a pre-heat duration and 
target temperature from which the zone will decay to 
maintenance setpoints, along with other attributes, reflect a 
transfer function for sufficient thermal “soaking” of the 
lubricant in the actuator gearboxes.  
 
In order to use an actuator in an activity during the fixed time 
its submaster was allotted, the pre-heating must be complete, 
or a fault will be declared. Herein lies another apparent 
limitation. A preheat activity must be dispatched early 
enough to complete in the worst-case scenario of Mars 
conditions that are modeled by operators on Earth. This 
depends on the temperature of the hardware, which in turn 
depends on a highly variable set of conditions, including  
seasonal climate, the local weather and convective wind 
effects, self-shadowing of sunlight, terrain thermal inertia, 
and the modulation of radiation by atmospheric tau. The 
difference between the worst-case answer and the actual 
requirement on a given Sol is most often substantial and can 
translate into tens of minutes or even an hour or more of 
premature heating. 
 
Example Schedule 

Figure 1 portrays a somewhat simplified but not 
unrepresentative abstraction of a schedule as it would have 
been created on MSL. The idle time spent at the end of each 
activity when it completes before its allocation is wasted 
time, as is the time allotted for cleanups that only have utility 
if execution is off-nominal. So, too, is the maintenance 
heating during this time wasted energy, in addition to the 

 
Figure 1. Example Schedule Using the Inherited MSL Planning Approach 
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excessive preheats for temperatures that are warmer than the 
worst case.  
 

4. HIGH-LEVEL OBJECTIVES OF OBP 
Event-driven Operation 

The two apparent limitations to the inherited approach that 
were previously described are addressed by OBP with fairly 
basic autonomy. Event-driven execution of the activities 
followed by event-driven shutdown can eliminate the time 
spent awake and idle after completion of the activities. 
Porting the heater relations used by operators on the ground 
to determine the duration and target temperature as a function 
of the zone temperature is also fairly straightforward and 
necessary to allow the start time of activities to become 
unfixed. For purposes of scheduling in the future, heater 
relations as a function of temperature can be converted to the 
same relations as a function of time of Sol with a relation 
derived from observed flight data for zone temperature as a 
function of time of Sol, as temperature cancels out. Actual 
temperatures will override these predictions as scheduled 
execution approaches. 
 
Addressing these two issues leverages one type of utility of 
autonomy – superior knowledge of state.  
 
Creating the Schedule 

However, these capabilities alone do not yet obviate the 
responsibility of operators to demarcate the set of activities 
that can be accommodated in a plan, or their relative ordering. 
More than just responding to state to slide activities left or 
right in a way that preserves a pre-defined scheduled order, 
OBP is tasked with creating the schedule itself. And not only 
once, but as feasible whenever a reasonably perturbed 
schedule would result. Because activities are not expected to 
be modeled with precision, and because the completion of an 
activity leaves a plan that is different from that used by all of 
the preceding schedules, a reasonable balance is expected to 
be tuned to 20-50 discrete invocations in a Sol, with each new 
schedule effectively burning down the preceding ones. The 
first schedule generated with a new plan is therefore expected 
to look substantially different than the as-run schedule that is 
the collective result of dozens of different schedule 
invocations. 
 
Computational Simplicity 

Mars 2020 does not have the computing capacity in its RCE 
FSW to iteratively search for any sort of solution. Whereas 
operators might move activities around after a full schedule 
has been created in order to gauge some metric of quality, 
OBP must use a “greedy” algorithm that doesn’t support 
backtracking. It’s envisioned that OBP will consume less 
than a few percent of all CPU capacity over the mission, 
using spare, low priority cycles at that. Over-broadly, for 
each activity in turn in priority order, OBP creates intervals 
of validity satisfying the plan and activity constraints. It then 
places an activity in the schedule at some location within the 
union of those intervals.   

 
It is accepted that this mechanistic approach to constructing 
a schedule with OBP will underperform some of the utility 
that an operator’s complex intellect could provide 
organically. What OBP does better, it must do a lot better. 
Algorithmic development has prioritized keeping OBP 
nimble, creating a plan in tens of seconds, using it as soon as 
it is available, and leveraging a faster loop for more 
continuous monitoring and execution requirements. 
 
Defragmentation 

If the temporal order of activities matched their importance, 
scheduling would be rather straightforward, approximating 
MSL’s “linked list” approach, also sometimes called an 
“accordion” plan. Each activity would simply be scheduled 
to start at the end of the activity that came before it, with 
dependencies flowing in only the single possible direction. 
Lower priority activities could never misbehave and 
endanger the resources of higher priority activities.  
 
However, OBP must accommodate the scheduling of 
activities for which priority and relative temporal order are 
not necessarily aligned, and for which the relative temporal 
order is not necessarily known a priori. The optional pre-
drive remote science that must be performed while in the 
current position should not be scheduled at the expense of the 
drive that follows it, nor is it valid to execute after it. The 
drive is fixed in the schedule invocation before the remote 
science is, but the remote science is placed in time earlier than 
the drive. Other activities could be placed in time either 
earlier or later than the drive or remote science.   
 
Placing activities out of temporal order invites a sort of 
fragmentation of the plan, gaps that could result in periods of 
idle time or a greater number of wake cycles, each with the 
overhead of shutdown and wakeup. However, it is often not 
preferred to merely slide an activity to meet its nearest 
neighbor, especially early in a given schedule invocation 
when few activities have been placed, because multiple wake 
cycles are common and must be accommodated where 
efficient. Neither is placing an activity in the earliest or latest 
part of its valid interval any sort of solution when that activity 
could be placed before or after its nearest neighbor, and other 
activities are yet to be placed in unknown locations. 
Fragmentation is enough of a concern that the main culprit on 
MSL – telecommunication passes – requires special 
dispensation, a new capability to pause and resume activities 
across the pass.  
 
Prioritization of Resources 

OBP is required to draw a distinction between activities that 
are required to execute and those that are optional. OBP is 
less punitive of required activities that exceed their expected 
duration, allowing them a long leash to violate plan 
constraints in execution, though not in scheduling. This 
embodies a guiding principle that OBP tolerate aggressive, 
probabilistic tuning of the plan in all things without risking a 
nuisance fault or hardware safety concern. As a campaign 
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will often build upon itself from Sol to Sol as data is digested 
by the scientists, it also implicitly assumes that today’s 
required activities are more important than tomorrow’s. In 
contrast, optional activities will be aborted before they are 
permitted to exceed what was modeled in either scheduling 
or execution, in order to protect the resources of the required 
activities later in the schedule. Their attributed durations and 
energy usage will have more margin – margin that OBP can 
buy back as the next schedule is invoked when they complete 
early.  
 

5. INTEGRATION OF OBP WITH THE 
INHERITED SYSTEM 

Mars 2020 is a system that was highly inherited from MSL, 
with most non-payload-specific RCE FSW capabilities 
preserved with minor tweaks or improvements. This decision 
was made early in the mission design, and backwards 
compatibility is required for initial checkouts, operations 
during anomaly investigation and fault recovery, and for risk 
mitigation. As such, the level of work effort to design and 
implement OBP was best contained where existing system 
capabilities could be leveraged with little to no alteration.  
 
The Plan 

At the highest level, the plan OBP takes as input is a set of 
plan constraints and a set of activities, each with their own 
constraints. Plan constraints include performance goals like 
the handover SOC, the minimum SOC below which we 
should recover energy by sleeping, the maximum SOC above 
which we should wake up instead of shunting, and the delta 
data volume that should result as creation of the new products 
and deletion of the old balance. Some additional attributes 
provision for setup prior to invoking the new plan and a 
“runout” plan if the next plan is not successfully placed on-
board. Activity constraints are intended to reflect first 
principles. Operators encode only those attributes that are 
necessary to avoid conflicting with their intent. If a remote 
science activity will be obstructed by the arm at the end of 
one of three contact science activities, a dependency 
expression will partition around that interval, even though the 
time range is unknown. However, operators will not 
invalidate an activity with constraints where it has no 
conflict. Here, the remote science could run after the other 
two contact science activities. 
 
The Activity 

In considering activities, the design of OBP acknowledges 
that the inherited system is built with commands in 
sequences. While heating and wake activities will be 
generated autonomously by OBP, every other activity maps 
to the execution of one sequence, in which the command and 
child sequence content is completely unknown to OBP.  
 
Physical Compatibility Constraints 

Because command content is unknown, resource usage 
across the activity is aggregated in a bitmask abstraction that 
informs the physical compatibility of an activity to execute in 

parallel with any others in the schedule. Even a single 
command in a lengthy activity could trigger incompatibility 
through aggregation of its resource.  
 
Activity Pause and Resume 

Because activities are sequences of commands, 
defragmentation around telecommunication passes is 
accomplished by controlling those sequences. OBP has the 
capability to pause otherwise atomic activities at the start of 
a pass, to resume them at the end of the pass, and to model 
this impact on the schedule, interrupting the march of 
commands in the sequence(s) of that activity. An inherited 
token tracking the lineage of sequences is re-purposed to 
uniquely identify all constituent sequences of the activity. In 
nearly every instance, this sort of sloppy cleanup merely 
allows whatever command(s) are executing to bleed over into 
the prep for the pass, where no conflict is yet present. Only a 
handful of commands with longer potential durations receive 
their own intra-command pause behavior, like the mobility 
path-tracking command. Otherwise, most commands in the 
system would have been touched to alter their own execution 
logic, a prohibitive cost. 
 
State Constraints 

Because the scheduling of activities depends so much on on-
board state information, including the execution status of 
other activities in the plan and, in a given circumstance, any 
of the thousands of data reported in engineering telemetry, 
state is the most consequential of activity constraints. 
Activity execution status is known when the activity has 
finished, projected with success when it has not started, and 
in progress when neither of these conditions holds. Likewise, 
a state constraint can be formulated to extrude or latch the 
current value forward in time, like a device health state. 
Alternatively, it assumes the value will be true in the future 
and let it be vetoed prior to execution, like a particular tool or 
rover position. Alternatively, it assumes the value will be 
false in the future and only valid now, using state to comment 
an activity into the schedule immediately, like a compression 
activity triggered on the number of bytes to compress. It is 
not enough to check this state only once an activity has started 
executing. OBP will execute an activity only once, and state 
could be invalid now but become valid later. By exposing 
state for purposes of scheduling, OBP can preserve activities 
until they are ripe for execution. 
 
Execution Range Constraints 

Ranges of valid execution times permit operators to encode 
first principles like the requirement for daylight or a need to 
execute before a decisional pass. They are formulated as a 
range of valid start times, along with a cutoff time. The design 
of OBP chooses not to assert that an activity exceeding an 
allocation by a certain percentage is necessarily off-nominal, 
as MSL did. The latest valid start time necessarily encodes a 
similar margin, but if the activity starts earlier in a given 
range of start times, it will be provided more time to run 
before being cut off, limiting the potential for nuisance faults 
if the predicted durations to which the margin is referenced 
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are less accurate.   
 
Relation of Constraints 

These different types of constraints and/or instances of the 
same type of constraint can be related to each other with 
propositional logic of moderate complexity. For instance, the 
logic on MSL for un-stowing the arm at the end of a drive is 
(A AND B AND (C OR (D AND ((E AND F) OR (G AND 
H AND I))))). These terms are a combination of context-
specific state such as tilt, positional tolerance and slip using 
either the ultimate or penultimate step depending on different 
possibilities of ultimate step distance and corresponding 
uncertainty in the slip estimate. OBP accommodates a certain 
number of terms with arbitrary nesting using a conjunctive 
normal form representation of propositional logic. For those 
intervals throughout the schedule in which the logic evaluates 
to true, the activity is valid to be placed within that interval. 
 
Schedule Priority 

Because a greedy algorithm has a topological imperative that 
any dependencies must already be placed in the schedule 
before they are referenced, a schedule priority is provided 
that determines the order of evaluation of what is expected to 
be 20-100 activities in a given plan. Much more than just 
encoding topology, this is the most powerful of the degrees 
of freedom to tune the plan, as it determines the order in 
which OBP will place activities with finality in a given 
schedule invocation. 
 
Partition of Activities 

While some activities like sample collection are time critical 
and must be completed contiguously, others, like contact 
science, can often be interleaved with communication passes 
and other activities. Defining smaller atomic activities tends 
to defragment a plan, and if prioritized for it, those less tightly 
constrained activities can act to fill interstices that would 
otherwise represent idle time awake, wasting energy. Where 
constraints permit, and especially where chains of 
dependency are limited or non-existent, the plan can thus be 
tuned with a balance of activity durations like coarse and fine 
aggregate in a matrix. The definition of each activity includes 
its own cleanup, which aborts and executes at an appropriate 
offset from a final drop-dead constraint like a cutoff time 
prior to a decisional pass.  
 
Activity Growth 

As the intent is that execution of a plan saturate a technical 
constraint, some activities can grow to better meet that 
constraint asymptotically. One type of activity allows the 
expected duration to expand continuously. For instance, an 
autonomous drive is able to just keep going until it’s told to 
abort, which could be triggered by this activity and all the rest 
already placed later in time in the schedule just saturating the 
handover SOC constraint. However, many science activities 
are not useful if interrupted. For instance, a 2x2 raster on a 
target could grow to 3x3 if resources permitted, but if cut off 
prematurely, the space would not be fully sampled. 

Furthermore, the sampled locations are different if only 4 
raster spots are available compared to 9, so the activity cannot 
simply be extended. Rather, one of several discrete versions 
of the activity, each of a fixed expected duration, should be 
chosen, biased such that the more consumptive are 
considered first.  
 
Activity Cleanup 

Cleanups are no longer executed regardless of the status of 
the activity they clean up, but only execute if that activity 
becomes off-nominal by completing with failure or being 
aborted. The time wasted allowing worst-case cleanup 
durations to run is therefore avoided. The only time the 
cleanup detracts from execution duration is in close 
proximity to a hard constraint, like a cutoff time. The cleanup 
must be dispatched at an offset that permits it sufficient time 
to execute before the constraint is reached. The use of a 
cleanup is off-nominal for most activities but nominal for the 
continuous expanding activity type.  
 
Activity Execution Status 

Every activity is able to declare its own execution success or 
failure according to whatever criteria operators desire, using 
conditional checks included at the end of the sequence. These 
may include error states, command failure counts, or any 
other piece of state in the essentially arbitrary propositional 
logic accessible in sequenced if-else statements. Success is 
then communicated at the end of this expression with the 
commanded return status of the sequence, leveraging an 
existing facility.  
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Example Schedule 

Figure 2 portrays the same set of activities as Figure 1 in a 
notional as-run schedule (of the same ordering, for 
simplicity), as altered by the capabilities of OBP. Most of the 
wasted time and energy is no longer present, and the passes 
do not have the same fragmenting effect. More time and 
energy is available for the drive, which is able to execute for 
a much longer interval. The drive and remote science are able 
to pause and resume across the UHF passes, without wasted 
time or fragmentation from needing to complete by the pass 
prep or else be scheduled elsewhere. 

6.  BEYOND PERFORMANCE REQUIREMENTS 
Veterans of past Mars missions, and of any type of project of 
sufficient complexity, can likely ascribe circumstances in 
which a “failure of imagination” contributed to a serious 
problem or deficiency. Mars 2020 will also have its share, as 
will OBP. One role of systems engineering is to ensure that 
as for any dynamic system, the engineer specifies sufficient 
actuation and sensing to avoid instability.   
 
Those working on OBP considered defining capabilities that 
were “good enough” by normalizing the performance of the 
system against a set of reference plans. However, this is a 
fraught and circular sort of formalism. OBP is capable 
enough when it receives a well enough crafted plan that in 
turn reflects a given set of capabilities of OBP. Furthermore, 
OBP could be optimized against this small and somewhat 
speculative set of plans in ways that would not necessarily be 
relevant to the plans that ultimately end up being created. 

Like models of what MSL operations would be before they 
commenced, we can do our best to project, but know that 
whatever comes to pass will depart significantly.  
 
The Minimum Degrees of Freedom 

The degrees of freedom already described include the priority 
order in which an activity is placed in its fixed location in a 
schedule while it’s being constructed, the partition of 
commands into different activities, the types of activities, and 
the plan and activity constraints. As these are adjusted, so too 
is the structure of the schedule likely to adjust. However, 

unlike a feedback control loop, turning to formal methods to 
gauge stability is difficult when that stability is relative to 
human expectations. OBP will not have any problem 
generating some schedule from any plan. But those sets of 
inputs can maroon activities as everywhere invalid, toggle 
wake states inefficiently, waste energy more profligately than 
any operator would permit, and otherwise lead to results that 
operators decry as silly. Alas, it is all on account of the 
programming in the plan.  
 
Additional Degrees of Freedom 

Additional degrees of freedom have been included to help 
steer emergence and promote efficiency. They are sort of 
poor man’s approaches to search and backtracking. Other 
degrees of freedom are also under consideration and may yet 
be introduced. 
 
Sort as Search—Within each of a number of sets of minimum 

 

Figure 2. Example Schedule Using Capabilities of OBP 
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and maximum start times encoded as constraints in an 
activity, a “preferred” time is also optionally provided. 
Across all of these sets, OBP will place the activity at the 
edge of the valid interval that is closest to the preferred time 
in any one of the sets. This sorting is well within the 
capabilities of the processor. However, it is a powerful degree 
of freedom to tune the plan. One of the concerns in the 
architecture has been that OBP would simply attempt to do 
everything as soon as possible, biasing into colder and less 
efficient execution times. Sometimes, execution has to bias 
cold in order to have sufficient time to execute prior to a 
decisional pass. However, often it need not. By simply setting 
the preferred start time in the location that centers the activity 
on some energy-biased centroid of the no-heat windows of its 
required heater zones, OBP would attempt placement in 
every part of the no-heat window before falling back to 
placements that require any heating at all. The same principle 
can be used to build, say, two discrete islands of awake time 
in a Sol, delimited by a lengthier interval of sleep, better 
managing a potentially inefficient toggling of wake states as 
the schedule interacts with the minimum permitted SOC in 
the plan. 
 
Schedule Rejection as Backtracking—While attempting to 
place the most consumptive version of an activity and falling 
back to lesser versions if unsuccessful addresses the temporal 
availability of a valid interval in the schedule constructed so 
far in a given invocation, it does not anticipate the energy 
needs of the lower priority activities yet to be placed. A more 
useful capability is to place the more consumptive activity, 
followed by all the rest of the activities in the plan, and only 
then if a constraint is violated reject that schedule so that a 
new one can be built with the less consumptive version. 
Because such versioned activities are expected to be small in 
number and typically have only two or three variants, this 
limited backtracking is accommodated by integration with 
existing schedule invocation triggering and throttling 
behavior. Essentially, OBP marks which version of the 
activity to consider next, tosses out the schedule, and uses 
that as a trigger for the next schedule invocation. 
 
Sequence the Inverse Constraint—Conditional state has been 
intentionally exposed for access in sequences such that the 
full range of logic OBP evaluates to determine the validity of 
an activity can be replicated by commands. Though the 
backtracking of two-way constraint relationships is not 
possible with a greedy algorithm, the second direction can be 
implemented without the knowledge of OBP. For instance, a 
drive may sometimes be invalid to execute without 
completing necessary remote science in the current location 
to finish a campaign. However, it may still result in more 
efficient behavior that the drive be placed in the plan with 
higher priority, as the most consumptive activity of the Sol. 
The dependency must then be the drive, with the remote 
science activity dependent on it. If the remote science activity 
cannot be placed, the drive would still be valid to execute 
according to its own constraints. This would then violate the 
intent that the campaign be completed before driving away 
(because it would be more inefficient to double back). 

Instead, the drive can check the execution status of the remote 
science activity, returning with failure if the remote science 
did not complete successfully. In contrast to state exposed to 
OBP, it is a “one-shot” mechanism, as the drive activity will 
never run again. However, in this and other envisioned 
contexts, it is important only to block the activity from 
executing. The failure of that drive could then buy back the 
time for the next invocation of a schedule to run that remote 
science activity, so that the next plan needn’t fully retread the 
steps of the previous.  
 

7. MONTE CARLO 

The central conceit of the architecture of OBP is a belief that 
activities can be placed in a vast number of permutations that 
span significantly different efficiencies across a range of 
possible execution outcomes. While the aforementioned 
developmental caveats apply here, the current belief is that 
heuristic approaches to tuning the available degrees of 
freedom are not alone capable of generating good enough 
plans. They may play a role in usefully constraining the 
search space, like a topological sort of dependencies does, but 
the raw materials provided by operators will be forged into a 
plan by the sort of brute force empiricism that the relative 
computational simplicity of schedule generation invites. In 
effect, computational complexity is shifted from the flight 
system to the ground system, where the number of 
instructions available in a workstation cluster during a given 
strategic planning cycle could be at least eight orders of 
magnitude higher than is available on-board in a single 
schedule invocation.  
 
Monte Carlo as Shaper of the Plan 

Enter the Monte Carlo. With the computational complexity 
available in the ground system, a first meta-dimension 
perturbs the independent variables of the plan itself – the set 
of priorities and constraints that control what plan is 
generated. For each resulting plan, a second meta-dimension 
perturbs the schedule – how the model encoded in the plan 
responds in actual execution, when activities under- or over-
perform in duration, energy, and data usage. As each activity 
builds up a history of executions in operations, some of these 
performance attributes are expected to be updated in the 
sampling distribution used in the Monte Carlo. This is part of 
a larger mission objective to feed the fidelity of as-run results 
back into the model wherever possible.  
 
A cost function scores the as-run results of each different plan 
across the probability distribution of the perturbed schedule 
execution for that plan. This is expected to adapt as the 
mission progresses and can serve its purpose in forms of 
varying complexity, starting quite credibly with the average 
of the sum of the duration of all activities that were actually 
able to execute completely with success, across the Monte 
Carlo distribution. A binary threshold of goodness is 
expected to be some high but not too high likelihood that all 
required activities will actually have executed successfully at 
the end of the plan without undercutting the handover SOC. 
If the threshold is not met, the plan is assumed to be “broken.” 
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The unbroken plan with the highest score is what gets sent to 
the rover. 
 
Future Reporting 

Before operations start in 2020, some of the developmental 
challenges relating to OBP and SP are likely to be the subject 
of future reporting. This may include the plan generation 
process, including what approaches are used to go about 
“unbreaking” the plan quickly and intelligently, so that plans 
may remain close to saturating a true technical constraint and 
campaigns don’t waffle. Verification and validation of OBP 
will also be challenging and likely result in lessons learned. 
 

8. SUMMARY  
On-Board Planner is a scheduling and execution facility of 
the Mars 2020 rover that seeks to more efficiently use 
available resources with event-driven, state-responsive 
autonomy. Due to computational limitations on the rover, 
improvements in efficiency rely as much on the intelligent 
programming of a plan as the capabilities of the flight 
software. The architecture has focused on providing degrees 
of freedom that are sufficient to effectively tune the plan. 
Operators will rely on empirical simulations to shape the plan 
downstream of the input the operator specifies in describing 
the fundamental attributes of each activity.  
 
 

 ACKNOWLEDGEMENTS 
The research was carried out at the Jet Propulsion Laboratory, 
California Institute of Technology, under a contract with the 
National Aeronautics and Space Administration. Copyright  
2018 California Institute of Technology. U.S. Government 
sponsorship acknowledged. 
 
The author thanks the many engineers at JPL that have 
collaborated together to engineer On-Board Planner and 
Simple Planner, a partial list of whom include Dan Gaines, 
Elyse Fosse, Gregg Rabideau, Eddie Benowitz, Steve Chien, 
Wayne Chi, Jagriti Agrawal, James Biehl, Rachael Collins, 
Colette Lohr, Usha Guduri, Rajeev Joshi, Glenn Reeves, 
Steve Scandore, Vandi Verma, Marcel Schoppers, Jim 
Kurien, and Corey Harmon. 
 
 

 REFERENCES  
[1] Prototyping an Onboard Scheduler for the Mars 2020 

Rover. Gregg Rabideau, Ed Benowitz. International 
Workshop on Planning and Scheduling for Space (IWPSS 
2017). Pittsburgh, PA. June 2017 + PDF CL#17-2272 

[2] Chi, W.; Chien, S.; Agrawal, J.; Rabideau, G.; Benowitz, 
E.; Gaines, D.; Fosse, E.; Kuhn, S.; and Biehl, J. 2018.   
Embedding a scheduler in execution for a planetary rover.   
In ICAPS 

[3]  Chi, W.; Agrawal, J.;  and Chien, S.  2018. Using  Squeaky  
Wheel  Optimization  to  Derive  Problem  Specific  Control  
Information  for  a  One Shot Scheduler for a Planetary 
Rover. In ICAPS 

. 



11 
 

BIOGRAPHY 
Stephen Kuhn received a B.S. in 
Mechanical Engineering from Carnegie 
Mellon University in 2008 and an M.S. in 
Aerospace Engineering from the 
Massachusetts Institute of Technology in 
2010. He has been the flight systems 
engineer for the CHIMRA mechanism on 

the Mars Science Laboratory mission, a rover planner on 
MSL, and held other systems engineering roles on MSL 
and the Mars 2020 missions at JPL. He is the On-Board 
Planner flight systems engineer for Mars 2020.  

 


