
 978-1-5386-6854-2/19/$31.00 ©2019 IEEE
 1

From Determinism to Emergence: Systems Engineering a
Step Change in Execution on Mars

Stephen Kuhn
NASA Jet Propulsion Laboratory,
California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91109

Stephen.Kuhn@jpl.nasa.gov

Abstract— Mars rover operators have traditionally controlled
the execution of behaviors using meticulously compiled
“master” sequences that enforce deterministic timing and
ordering of activities. While the approach is effective at
managing risk and complexity, it can be inefficient.
Determinism demands conservatism in all things and is
mitigated only at the cost of fidelity in ground modeling of flight
behavior, an elusive goal. Direct manipulation, as well as
inspection by mission operators of the automation layers used to
build a schedule, is both feasible and time-consuming. The Mars
2020 rover mission plans to introduce a fundamentally different
high-level scheduling and execution approach. Atomic activities
are constrained by operators in time, resource usage, and a
structure of state dependencies, from largely reusable first
principles. The rover flight software will create and re-create a
schedule of activities, responding to available energy, actual
activity durations and execution status, observed temperatures,
and other on-board state. The solution space of possible
schedules is prohibitively large and probabilistic. Direct
manipulation and inspection of automation are no longer
possible on the shortened tactical timelines envisioned for the
mission. Schedules are permitted and expected to change
substantially as execution burns down the plan. Emergent
behavior is accessible depending on the interaction of a given
formulation of the plan with actual on-board state. The
architecture must anticipate and provide capabilities in the
flight software and/or ground tools to help steer emergence. It
must leverage the facilities of a highly inherited system to the
greatest extent feasible. It must function in that small sliver of
computational capacity available in an already diminutive
processor, lest it cannibalize from executing activities the
efficiency it seeks to gain. This paper discusses the challenges
and considerations in systems engineering the first planned
autonomous high-level activity planner on Mars.

TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. FIRST PRINCIPLES OF MARS OPERATION 2
3. THE INHERITED SYSTEM 3
4. HIGH-LEVEL OBJECTIVES OF OBP 5
5. INTEGRATION OF OBP WITH THE INHERITED
SYSTEM ... 6
6. BEYOND PERFORMANCE REQUIREMENTS 8
7. MONTE CARLO ... 9
8. SUMMARY ... 10

ACKNOWLEDGEMENTS .. 10
REFERENCES .. 10
BIOGRAPHY.. 11

1. INTRODUCTION
The Mars 2020 Flight System capability discussed in this
paper, known as On-Board Planner (“OBP”), is part of an
end-to-end mission capability known as Simple Planner
(“SP”). SP is intimately linked with changes to Mars 2020
mission processes intended to nearly halve the time it takes
to generate the schedule of activities for one or more Martian
days, or Sols, of operations. This in turn is aimed at
increasing the productivity of the mission by enabling
continuous synchronization of Mars execution and Earth
planning cycles.

OBP is a capability of the Mars 2020 Rover Compute
Element (“RCE”) Flight Software (“FSW”) to derive from a
set of inputs and execute a schedule of activities. OBP was
conceived primarily as an autonomy layer to improve
efficiency and as an aid to help offload complexity from
mission operators in crafting a plan. OBP controls execution
only while the rover remains nominal and is terminated in the
event the rover safes.

A detailed description of OBP algorithms or of the other
algorithmic approaches used to help create inputs to OBP is
outside the scope of this paper and is addressed in nascent
part in [1], [2] and [3]. These approaches are discussed only
generally, with some attributes or accepted limitations
abstracted to help explain or justify the system design.

This paper describes the inefficiencies OBP is attempting to
address, some challenges the architecture accepts, and the
approaches to addressing these challenges in the design of
OBP and SP. Because these are on-going development
efforts, some of the content described herein is subject to
change. This paper also represents a high-level summary that
glosses over technical details without exposing finer
distinctions.

2

2. FIRST PRINCIPLES OF MARS OPERATION
Several conventions of Mars operations function as
constraints that the design of OBP anticipates, and it is
therefore useful to the understanding of OBP to briefly
describe them.

The Activities

Mars 2020, much like Mars Science Laboratory (“MSL”)
before it, will spend nearly all of its nominal waking hours
performing three core classes of activity: (1) remote science
with a sensing mast; (2) contact and sampling science with
the robotic arm and sample handling arm; and (3) driving.
Due to avionics and logistical limitations, these activities are
not executed in parallel and would indeed assert preventive
faults if this were attempted, but may be partitioned and
phased in a myriad of ways. (Engineering maintenance
activities comprise another class of nominal activity but can
in many instances be performed in parallel and tend not to
require significant expenditure of time not already being
spent awake). Nearly all of these activities require sunlight to
execute, in some cases of constrained incidence. Extended
planning operations on Earth similarly are largely confined to
plausible daylight working hours at JPL, where most
operators live.

Power

Mars 2020 is not quite power positive when its RCE FSW is
running even in a quiescent state with no discretionary loads,
but must instead spend nearly 2/3 of its time on Mars with the
RCE powered off in order to recharge its batteries from the
thermoelectric generator. To recover the energy needed to
operate, all but the limbic loads shed and a low-level state
machine does little more than monitor faults and manage
warmup heaters while it counts down the time to wake back
up. The difference in power between these states is
substantial, a factor of 4 or more. However, the transition is
not instantaneous. It takes time to go to sleep and more time
to wake back up. Allowing for the worst cases permitted,
naps can usually be no briefer than 15 minutes from start of
shutdown to end of wakeup.

Like other lithium-ion batteries, the two rover batteries
degrade if discharged too deeply and are not intentionally
permitted to dip below 40% state-of-charge (“SOC”).
Spending lengthy intervals at 100% SOC, at which level
excess energy is shunted to bleed resistors, is also degrading
of the batteries.

Thermal

Mars 2020 will operate in a sufficiently adverse thermal
environment that prior to use, its actuators and instruments
must be pre-heated and continue maintenance heating during
some or most of a Sol, depending on the Martian season.
However, in Jezero, as in Gale Crater, there will typically
always be a period for which no pre-heating is required, at
least for most of the Martian year. Actuator preheat can take
minutes to hours depending on environmental conditions. To

pre-heat all mobility-related heater zones for one hour
consumes more than 5% of all energy the rover generates in
a Sol, cannibalizing nearly an hour of awake time that must
instead be spent asleep. The coldest temperatures are at
dawn. The warmest temperatures are at mid-afternoon. The
actuator no-heat window is centered somewhat later than the
warmest time of the Sol.

Mars 2020 will be uploaded new instructions direct from
Earth (DFE) via the Deep Space Network (DSN) in X-band
communications passes of at most 30 minutes. These occur
at approximately the same local time throughout a Martian
year, at mid-Martian morning when actuator temperatures are
nearer the coldest than the warmest part of the Sol. When
operators are able to work every day on Earth, Mars 2020 will
receive a new plan every Sol. A “plan” is defined here as the
set of inputs uplinked to the rover in each planning cycle. On
MSL, the plan also happened to encode one and only one
fixed “schedule,” or a particular arrangement of activities.
Unlike planning for the MSL and MER missions, an uplink
planning cycle on Mars 2020 will be short enough to
accommodate even the worst-case asynchrony in daylight
hours between JPL and Mars, which precess with respect to
each other over a period of approximately five weeks.
Nevertheless, it is expected that for much of the mission, a
plan will not be generated on weekends and holidays at JPL,
and the plan generated on Friday will execute across several
Sols.

Telecommunication

Mars 2020 will transmit all telemetry to relay Mars orbiters
in UHF communications passes of approximately 20 minutes.
Those of the sun synchronous orbiters will occur regularly,
always cycling within a couple hours of mid-Martian
afternoon and the wee hours of the Martian morning.
MAVEN with its elliptical orbit will cycle across different
local times from Sol to Sol. Depending on the mix of orbiters
still in service or yet to be launched, the partition of their relay
capacity among Mars surface missions, and the downlink
needs of Mars 2020, six or more UHF passes in a Sol are
possible. And Mars 2020 will use all it can get, as it is
expected to generate significantly more data than MSL did.
Many activities generate electromagnetic interference with
some of the signal processing needed to maintain two-way
communication with the orbiters, while other activities don’t.

The mid-Martian afternoon passes and any late afternoon
passes are typically well-situated such that the telemetry
would be received at JPL prior to starting planning for the
next Sol. On MSL for single-Sol plans, an average of about
five hours of higher-value execution time has been available
prior to this “decisional” pass. Data that is necessary (for
“ground-in-the-loop” activities) or helpful to inform planning
of the science or engineering activities for the next Sol’s
execution must be executed during this time. However,
activities for which such information is not required can be
scheduled after the decisional pass and assumed to succeed
for purposes of planning. Much of the time prior to a
decisional pass, extending from mid-morning to mid-

3

afternoon, requires more heating energy for an activity than
if executed from mid-afternoon to early evening.

3. THE INHERITED SYSTEM
Mars 2020 inherits from MSL nearly all of the same hardware
with which the RCE FSW interacts and all of the same
behavioral layers.

Control Interfaces

All of the science the rover collects is the consequence of
RCE FSW commands. These commands are discrete encoded
behaviors of varying scope and abstraction, most of which are
passed configuring arguments. One command induces a fixed
voltage across a motor control driver. Another induces a
motor to ramp up, spin at a fixed speed and ramp down as a
profiler feeds back to voltage in a control loop. Another
commands a set of motors to work together to follow a path-
tracking trajectory until some offset from a projected goal
line is reached. Another kicks off the entire set of Entry,
Descent and Landing behaviors. Fundamentally, the
commands are the abstractions of behavior that were
conceived as being useful or necessary to operate the mission.
There will be more than a thousand and fewer than ten
thousand commands in the version of the RCE FSW used for
the surface phase of the Mars 2020 mission.

To build and execute an activity, such as contact science on a
target, commands are executed in some relationship to each
other. Discrete engines allow serial sequences of commands
to run in a single event-driven context, for which the
completion of one command triggers the next command in
that sequence to begin. In other engines, other sequences may
progress in parallel in their own context. An activity can use
generations of sequences, one sequence invoking a more
primitive, possibly reusable child sequence, which might
function as a meta-command. For instance, one contact
science sequence could invoke a child sequence to place and
retract the arm on whatever the currently selected target
happens to be, which in turn invokes child sequences to open
and close an instrument cover at certain intended offsets.
Within this nest of essentially organically variable
abstraction – the command, the sequence, and the tree of
sequences – exist all of the behaviors commanded of the
rover.

The ”Master” Sequence

On MSL, the root of the tree is the “master” sequence, which
encodes a schedule and controls the dispatch of “submaster”
sequences and cleanup activities, using fixed timing that is
not event-driven. Each submaster is deactivated and cleaned
up at a later fixed time so as not to endanger the fixed start
time of the next submaster. MSL does not employ any
conditional logic in its execution of master and submaster
sequences, such that not only the timing but also the order of
execution is fixed. The cleanup, which aborts an activity that
has overstayed its welcome and establishes some state, is
dispatched and permitted a worst-case execution time

regardless of whether the submaster already completed.

This open-loop determinism reduces complexity and limits
the possibility of emergent behavior. However, it has an
apparent limitation. If an activity is only permitted to execute
in a fixed window, and will fault if it exceeds that allocation,
perhaps failing to achieve the state required by future
dependent activities, then a duration that is nearly certain to
be sufficient must be allocated. In practice, a common rule of
thumb on MSL is 25% greater than the best estimated
duration. Across ten thousand or more submasters, only a few
have ever exceeded the allocation using this approach, albeit
on account of new or uncharacterized behavior. In the interest
of determinism, shutdown commands are sent at fixed times,
such that this margin and any conservatism amounts to awake
time that could have been spent asleep recharging the
batteries.

Scheduling of a Plan

A schedule is arranged from a plan at the discretion of an
operator manually placing a representation of each activity.
Constructing a skeleton is often relatively straightforward,
before the saturation of any constraints. Remote science in
the current location must be placed before the activity that
drives away. Often a lengthier activity can be placed first,
driving the structure of the schedule to either side of it.

However, as a schedule grows from that minimum that can
always be accommodated, choices are made that affect
efficiency, and the skeleton locks in a certain range of
outcomes. Activities are grouped into periods of awake time,
and those with a degree of freedom, like drive distance, are
tuned. A driving intent is always that sufficient energy exist
at the end of the plan at “handover” that what’s been
conceived and modeled as the next plan to come after also
has sufficient energy, and so on down a chain that goes out
as far as a week or more at some level of fidelity. To do so,
MSL operators must project the energy usage of each
activity, which is a function of the duration of the activity, its
heating usage, and the consumption of the devices required
to execute the activity.

Ideally, the plan saturates at some modeled technical
limitation, such as the SOC at handover to the next plan or
the amount of time until the decisional pass. However, it can
also saturate at the level of complexity operators can
accommodate in the time they have available to create the
plan.

Existing Autonomy

While the high-level planning process is largely the manual
work of human operators, autonomy layers that can impact
the execution of a plan also exist in the RCE FSW. When a
behavior wishes to use a resource that is already in use by
another behavior, autonomy determines whether the conflict
was unanticipated and ought to result in a declared fault in
one or both, or whether to delay. Resources include
multiplexed motor control drivers and a particular

4

electromagnetic or vibration environment. Likewise, if a
command requires certain state constraints, it will fail if that
state is not satisfied before attempting any of its encoded
behavior. For instance, a drill command should not execute if
the robotic arm had not reached its commanded goal.
Therefore, drill commands require the state that no robotic
arm goal error be declared.

This type of autonomy is limited and, in most contexts, was
intended only to prevent unsafe behavior once a fault has
occurred. However, these sorts of protections are far from
comprehensive. For instance, the arm may not have reached
its position not because it failed a command and declared an
error, but because an earlier arm sequence was corrupted in
transmission and therefore did not execute at all. The
conditional checking of state from within activities, including
variables set upon successful execution of a dependency
activity, the existence in memory and execution status of
sequences, and other context-specific state information can
inform the extent to which it is both useful and safe to execute
a dependent activity.

Background Configuration

Telecommunication windows with myriad configuration
settings are encoded as table entries and tended strategically,
typically weeks to months in advance of the pass, as DSN and
orbiter phasing and availability are coordinated. Sometimes
passes are deleted tactically.

While survival electrical resistance heating and the control of
the single-phase loop that distributes heat throughout the
rover are tended with passive mechanisms like thermostats

and linear thermal actuators mixing and splitting refrigerant,
warmup heaters are controlled with another set of table
entries. For a given zone temperature, a pre-heat duration and
target temperature from which the zone will decay to
maintenance setpoints, along with other attributes, reflect a
transfer function for sufficient thermal “soaking” of the
lubricant in the actuator gearboxes.

In order to use an actuator in an activity during the fixed time
its submaster was allotted, the pre-heating must be complete,
or a fault will be declared. Herein lies another apparent
limitation. A preheat activity must be dispatched early
enough to complete in the worst-case scenario of Mars
conditions that are modeled by operators on Earth. This
depends on the temperature of the hardware, which in turn
depends on a highly variable set of conditions, including
seasonal climate, the local weather and convective wind
effects, self-shadowing of sunlight, terrain thermal inertia,
and the modulation of radiation by atmospheric tau. The
difference between the worst-case answer and the actual
requirement on a given Sol is most often substantial and can
translate into tens of minutes or even an hour or more of
premature heating.

Example Schedule

Figure 1 portrays a somewhat simplified but not
unrepresentative abstraction of a schedule as it would have
been created on MSL. The idle time spent at the end of each
activity when it completes before its allocation is wasted
time, as is the time allotted for cleanups that only have utility
if execution is off-nominal. So, too, is the maintenance
heating during this time wasted energy, in addition to the

Figure 1. Example Schedule Using the Inherited MSL Planning Approach

5

excessive preheats for temperatures that are warmer than the
worst case.

4. HIGH-LEVEL OBJECTIVES OF OBP
Event-driven Operation

The two apparent limitations to the inherited approach that
were previously described are addressed by OBP with fairly
basic autonomy. Event-driven execution of the activities
followed by event-driven shutdown can eliminate the time
spent awake and idle after completion of the activities.
Porting the heater relations used by operators on the ground
to determine the duration and target temperature as a function
of the zone temperature is also fairly straightforward and
necessary to allow the start time of activities to become
unfixed. For purposes of scheduling in the future, heater
relations as a function of temperature can be converted to the
same relations as a function of time of Sol with a relation
derived from observed flight data for zone temperature as a
function of time of Sol, as temperature cancels out. Actual
temperatures will override these predictions as scheduled
execution approaches.

Addressing these two issues leverages one type of utility of
autonomy – superior knowledge of state.

Creating the Schedule

However, these capabilities alone do not yet obviate the
responsibility of operators to demarcate the set of activities
that can be accommodated in a plan, or their relative ordering.
More than just responding to state to slide activities left or
right in a way that preserves a pre-defined scheduled order,
OBP is tasked with creating the schedule itself. And not only
once, but as feasible whenever a reasonably perturbed
schedule would result. Because activities are not expected to
be modeled with precision, and because the completion of an
activity leaves a plan that is different from that used by all of
the preceding schedules, a reasonable balance is expected to
be tuned to 20-50 discrete invocations in a Sol, with each new
schedule effectively burning down the preceding ones. The
first schedule generated with a new plan is therefore expected
to look substantially different than the as-run schedule that is
the collective result of dozens of different schedule
invocations.

Computational Simplicity

Mars 2020 does not have the computing capacity in its RCE
FSW to iteratively search for any sort of solution. Whereas
operators might move activities around after a full schedule
has been created in order to gauge some metric of quality,
OBP must use a “greedy” algorithm that doesn’t support
backtracking. It’s envisioned that OBP will consume less
than a few percent of all CPU capacity over the mission,
using spare, low priority cycles at that. Over-broadly, for
each activity in turn in priority order, OBP creates intervals
of validity satisfying the plan and activity constraints. It then
places an activity in the schedule at some location within the
union of those intervals.

It is accepted that this mechanistic approach to constructing
a schedule with OBP will underperform some of the utility
that an operator’s complex intellect could provide
organically. What OBP does better, it must do a lot better.
Algorithmic development has prioritized keeping OBP
nimble, creating a plan in tens of seconds, using it as soon as
it is available, and leveraging a faster loop for more
continuous monitoring and execution requirements.

Defragmentation

If the temporal order of activities matched their importance,
scheduling would be rather straightforward, approximating
MSL’s “linked list” approach, also sometimes called an
“accordion” plan. Each activity would simply be scheduled
to start at the end of the activity that came before it, with
dependencies flowing in only the single possible direction.
Lower priority activities could never misbehave and
endanger the resources of higher priority activities.

However, OBP must accommodate the scheduling of
activities for which priority and relative temporal order are
not necessarily aligned, and for which the relative temporal
order is not necessarily known a priori. The optional pre-
drive remote science that must be performed while in the
current position should not be scheduled at the expense of the
drive that follows it, nor is it valid to execute after it. The
drive is fixed in the schedule invocation before the remote
science is, but the remote science is placed in time earlier than
the drive. Other activities could be placed in time either
earlier or later than the drive or remote science.

Placing activities out of temporal order invites a sort of
fragmentation of the plan, gaps that could result in periods of
idle time or a greater number of wake cycles, each with the
overhead of shutdown and wakeup. However, it is often not
preferred to merely slide an activity to meet its nearest
neighbor, especially early in a given schedule invocation
when few activities have been placed, because multiple wake
cycles are common and must be accommodated where
efficient. Neither is placing an activity in the earliest or latest
part of its valid interval any sort of solution when that activity
could be placed before or after its nearest neighbor, and other
activities are yet to be placed in unknown locations.
Fragmentation is enough of a concern that the main culprit on
MSL – telecommunication passes – requires special
dispensation, a new capability to pause and resume activities
across the pass.

Prioritization of Resources

OBP is required to draw a distinction between activities that
are required to execute and those that are optional. OBP is
less punitive of required activities that exceed their expected
duration, allowing them a long leash to violate plan
constraints in execution, though not in scheduling. This
embodies a guiding principle that OBP tolerate aggressive,
probabilistic tuning of the plan in all things without risking a
nuisance fault or hardware safety concern. As a campaign

6

will often build upon itself from Sol to Sol as data is digested
by the scientists, it also implicitly assumes that today’s
required activities are more important than tomorrow’s. In
contrast, optional activities will be aborted before they are
permitted to exceed what was modeled in either scheduling
or execution, in order to protect the resources of the required
activities later in the schedule. Their attributed durations and
energy usage will have more margin – margin that OBP can
buy back as the next schedule is invoked when they complete
early.

5. INTEGRATION OF OBP WITH THE
INHERITED SYSTEM

Mars 2020 is a system that was highly inherited from MSL,
with most non-payload-specific RCE FSW capabilities
preserved with minor tweaks or improvements. This decision
was made early in the mission design, and backwards
compatibility is required for initial checkouts, operations
during anomaly investigation and fault recovery, and for risk
mitigation. As such, the level of work effort to design and
implement OBP was best contained where existing system
capabilities could be leveraged with little to no alteration.

The Plan

At the highest level, the plan OBP takes as input is a set of
plan constraints and a set of activities, each with their own
constraints. Plan constraints include performance goals like
the handover SOC, the minimum SOC below which we
should recover energy by sleeping, the maximum SOC above
which we should wake up instead of shunting, and the delta
data volume that should result as creation of the new products
and deletion of the old balance. Some additional attributes
provision for setup prior to invoking the new plan and a
“runout” plan if the next plan is not successfully placed on-
board. Activity constraints are intended to reflect first
principles. Operators encode only those attributes that are
necessary to avoid conflicting with their intent. If a remote
science activity will be obstructed by the arm at the end of
one of three contact science activities, a dependency
expression will partition around that interval, even though the
time range is unknown. However, operators will not
invalidate an activity with constraints where it has no
conflict. Here, the remote science could run after the other
two contact science activities.

The Activity

In considering activities, the design of OBP acknowledges
that the inherited system is built with commands in
sequences. While heating and wake activities will be
generated autonomously by OBP, every other activity maps
to the execution of one sequence, in which the command and
child sequence content is completely unknown to OBP.

Physical Compatibility Constraints

Because command content is unknown, resource usage
across the activity is aggregated in a bitmask abstraction that
informs the physical compatibility of an activity to execute in

parallel with any others in the schedule. Even a single
command in a lengthy activity could trigger incompatibility
through aggregation of its resource.

Activity Pause and Resume

Because activities are sequences of commands,
defragmentation around telecommunication passes is
accomplished by controlling those sequences. OBP has the
capability to pause otherwise atomic activities at the start of
a pass, to resume them at the end of the pass, and to model
this impact on the schedule, interrupting the march of
commands in the sequence(s) of that activity. An inherited
token tracking the lineage of sequences is re-purposed to
uniquely identify all constituent sequences of the activity. In
nearly every instance, this sort of sloppy cleanup merely
allows whatever command(s) are executing to bleed over into
the prep for the pass, where no conflict is yet present. Only a
handful of commands with longer potential durations receive
their own intra-command pause behavior, like the mobility
path-tracking command. Otherwise, most commands in the
system would have been touched to alter their own execution
logic, a prohibitive cost.

State Constraints

Because the scheduling of activities depends so much on on-
board state information, including the execution status of
other activities in the plan and, in a given circumstance, any
of the thousands of data reported in engineering telemetry,
state is the most consequential of activity constraints.
Activity execution status is known when the activity has
finished, projected with success when it has not started, and
in progress when neither of these conditions holds. Likewise,
a state constraint can be formulated to extrude or latch the
current value forward in time, like a device health state.
Alternatively, it assumes the value will be true in the future
and let it be vetoed prior to execution, like a particular tool or
rover position. Alternatively, it assumes the value will be
false in the future and only valid now, using state to comment
an activity into the schedule immediately, like a compression
activity triggered on the number of bytes to compress. It is
not enough to check this state only once an activity has started
executing. OBP will execute an activity only once, and state
could be invalid now but become valid later. By exposing
state for purposes of scheduling, OBP can preserve activities
until they are ripe for execution.

Execution Range Constraints

Ranges of valid execution times permit operators to encode
first principles like the requirement for daylight or a need to
execute before a decisional pass. They are formulated as a
range of valid start times, along with a cutoff time. The design
of OBP chooses not to assert that an activity exceeding an
allocation by a certain percentage is necessarily off-nominal,
as MSL did. The latest valid start time necessarily encodes a
similar margin, but if the activity starts earlier in a given
range of start times, it will be provided more time to run
before being cut off, limiting the potential for nuisance faults
if the predicted durations to which the margin is referenced

7

are less accurate.

Relation of Constraints

These different types of constraints and/or instances of the
same type of constraint can be related to each other with
propositional logic of moderate complexity. For instance, the
logic on MSL for un-stowing the arm at the end of a drive is
(A AND B AND (C OR (D AND ((E AND F) OR (G AND
H AND I))))). These terms are a combination of context-
specific state such as tilt, positional tolerance and slip using
either the ultimate or penultimate step depending on different
possibilities of ultimate step distance and corresponding
uncertainty in the slip estimate. OBP accommodates a certain
number of terms with arbitrary nesting using a conjunctive
normal form representation of propositional logic. For those
intervals throughout the schedule in which the logic evaluates
to true, the activity is valid to be placed within that interval.

Schedule Priority

Because a greedy algorithm has a topological imperative that
any dependencies must already be placed in the schedule
before they are referenced, a schedule priority is provided
that determines the order of evaluation of what is expected to
be 20-100 activities in a given plan. Much more than just
encoding topology, this is the most powerful of the degrees
of freedom to tune the plan, as it determines the order in
which OBP will place activities with finality in a given
schedule invocation.

Partition of Activities

While some activities like sample collection are time critical
and must be completed contiguously, others, like contact
science, can often be interleaved with communication passes
and other activities. Defining smaller atomic activities tends
to defragment a plan, and if prioritized for it, those less tightly
constrained activities can act to fill interstices that would
otherwise represent idle time awake, wasting energy. Where
constraints permit, and especially where chains of
dependency are limited or non-existent, the plan can thus be
tuned with a balance of activity durations like coarse and fine
aggregate in a matrix. The definition of each activity includes
its own cleanup, which aborts and executes at an appropriate
offset from a final drop-dead constraint like a cutoff time
prior to a decisional pass.

Activity Growth

As the intent is that execution of a plan saturate a technical
constraint, some activities can grow to better meet that
constraint asymptotically. One type of activity allows the
expected duration to expand continuously. For instance, an
autonomous drive is able to just keep going until it’s told to
abort, which could be triggered by this activity and all the rest
already placed later in time in the schedule just saturating the
handover SOC constraint. However, many science activities
are not useful if interrupted. For instance, a 2x2 raster on a
target could grow to 3x3 if resources permitted, but if cut off
prematurely, the space would not be fully sampled.

Furthermore, the sampled locations are different if only 4
raster spots are available compared to 9, so the activity cannot
simply be extended. Rather, one of several discrete versions
of the activity, each of a fixed expected duration, should be
chosen, biased such that the more consumptive are
considered first.

Activity Cleanup

Cleanups are no longer executed regardless of the status of
the activity they clean up, but only execute if that activity
becomes off-nominal by completing with failure or being
aborted. The time wasted allowing worst-case cleanup
durations to run is therefore avoided. The only time the
cleanup detracts from execution duration is in close
proximity to a hard constraint, like a cutoff time. The cleanup
must be dispatched at an offset that permits it sufficient time
to execute before the constraint is reached. The use of a
cleanup is off-nominal for most activities but nominal for the
continuous expanding activity type.

Activity Execution Status

Every activity is able to declare its own execution success or
failure according to whatever criteria operators desire, using
conditional checks included at the end of the sequence. These
may include error states, command failure counts, or any
other piece of state in the essentially arbitrary propositional
logic accessible in sequenced if-else statements. Success is
then communicated at the end of this expression with the
commanded return status of the sequence, leveraging an
existing facility.

8

Example Schedule

Figure 2 portrays the same set of activities as Figure 1 in a
notional as-run schedule (of the same ordering, for
simplicity), as altered by the capabilities of OBP. Most of the
wasted time and energy is no longer present, and the passes
do not have the same fragmenting effect. More time and
energy is available for the drive, which is able to execute for
a much longer interval. The drive and remote science are able
to pause and resume across the UHF passes, without wasted
time or fragmentation from needing to complete by the pass
prep or else be scheduled elsewhere.

6. BEYOND PERFORMANCE REQUIREMENTS
Veterans of past Mars missions, and of any type of project of
sufficient complexity, can likely ascribe circumstances in
which a “failure of imagination” contributed to a serious
problem or deficiency. Mars 2020 will also have its share, as
will OBP. One role of systems engineering is to ensure that
as for any dynamic system, the engineer specifies sufficient
actuation and sensing to avoid instability.

Those working on OBP considered defining capabilities that
were “good enough” by normalizing the performance of the
system against a set of reference plans. However, this is a
fraught and circular sort of formalism. OBP is capable
enough when it receives a well enough crafted plan that in
turn reflects a given set of capabilities of OBP. Furthermore,
OBP could be optimized against this small and somewhat
speculative set of plans in ways that would not necessarily be
relevant to the plans that ultimately end up being created.

Like models of what MSL operations would be before they
commenced, we can do our best to project, but know that
whatever comes to pass will depart significantly.

The Minimum Degrees of Freedom

The degrees of freedom already described include the priority
order in which an activity is placed in its fixed location in a
schedule while it’s being constructed, the partition of
commands into different activities, the types of activities, and
the plan and activity constraints. As these are adjusted, so too
is the structure of the schedule likely to adjust. However,

unlike a feedback control loop, turning to formal methods to
gauge stability is difficult when that stability is relative to
human expectations. OBP will not have any problem
generating some schedule from any plan. But those sets of
inputs can maroon activities as everywhere invalid, toggle
wake states inefficiently, waste energy more profligately than
any operator would permit, and otherwise lead to results that
operators decry as silly. Alas, it is all on account of the
programming in the plan.

Additional Degrees of Freedom

Additional degrees of freedom have been included to help
steer emergence and promote efficiency. They are sort of
poor man’s approaches to search and backtracking. Other
degrees of freedom are also under consideration and may yet
be introduced.

Sort as Search—Within each of a number of sets of minimum

Figure 2. Example Schedule Using Capabilities of OBP

9

and maximum start times encoded as constraints in an
activity, a “preferred” time is also optionally provided.
Across all of these sets, OBP will place the activity at the
edge of the valid interval that is closest to the preferred time
in any one of the sets. This sorting is well within the
capabilities of the processor. However, it is a powerful degree
of freedom to tune the plan. One of the concerns in the
architecture has been that OBP would simply attempt to do
everything as soon as possible, biasing into colder and less
efficient execution times. Sometimes, execution has to bias
cold in order to have sufficient time to execute prior to a
decisional pass. However, often it need not. By simply setting
the preferred start time in the location that centers the activity
on some energy-biased centroid of the no-heat windows of its
required heater zones, OBP would attempt placement in
every part of the no-heat window before falling back to
placements that require any heating at all. The same principle
can be used to build, say, two discrete islands of awake time
in a Sol, delimited by a lengthier interval of sleep, better
managing a potentially inefficient toggling of wake states as
the schedule interacts with the minimum permitted SOC in
the plan.

Schedule Rejection as Backtracking—While attempting to
place the most consumptive version of an activity and falling
back to lesser versions if unsuccessful addresses the temporal
availability of a valid interval in the schedule constructed so
far in a given invocation, it does not anticipate the energy
needs of the lower priority activities yet to be placed. A more
useful capability is to place the more consumptive activity,
followed by all the rest of the activities in the plan, and only
then if a constraint is violated reject that schedule so that a
new one can be built with the less consumptive version.
Because such versioned activities are expected to be small in
number and typically have only two or three variants, this
limited backtracking is accommodated by integration with
existing schedule invocation triggering and throttling
behavior. Essentially, OBP marks which version of the
activity to consider next, tosses out the schedule, and uses
that as a trigger for the next schedule invocation.

Sequence the Inverse Constraint—Conditional state has been
intentionally exposed for access in sequences such that the
full range of logic OBP evaluates to determine the validity of
an activity can be replicated by commands. Though the
backtracking of two-way constraint relationships is not
possible with a greedy algorithm, the second direction can be
implemented without the knowledge of OBP. For instance, a
drive may sometimes be invalid to execute without
completing necessary remote science in the current location
to finish a campaign. However, it may still result in more
efficient behavior that the drive be placed in the plan with
higher priority, as the most consumptive activity of the Sol.
The dependency must then be the drive, with the remote
science activity dependent on it. If the remote science activity
cannot be placed, the drive would still be valid to execute
according to its own constraints. This would then violate the
intent that the campaign be completed before driving away
(because it would be more inefficient to double back).

Instead, the drive can check the execution status of the remote
science activity, returning with failure if the remote science
did not complete successfully. In contrast to state exposed to
OBP, it is a “one-shot” mechanism, as the drive activity will
never run again. However, in this and other envisioned
contexts, it is important only to block the activity from
executing. The failure of that drive could then buy back the
time for the next invocation of a schedule to run that remote
science activity, so that the next plan needn’t fully retread the
steps of the previous.

7. MONTE CARLO

The central conceit of the architecture of OBP is a belief that
activities can be placed in a vast number of permutations that
span significantly different efficiencies across a range of
possible execution outcomes. While the aforementioned
developmental caveats apply here, the current belief is that
heuristic approaches to tuning the available degrees of
freedom are not alone capable of generating good enough
plans. They may play a role in usefully constraining the
search space, like a topological sort of dependencies does, but
the raw materials provided by operators will be forged into a
plan by the sort of brute force empiricism that the relative
computational simplicity of schedule generation invites. In
effect, computational complexity is shifted from the flight
system to the ground system, where the number of
instructions available in a workstation cluster during a given
strategic planning cycle could be at least eight orders of
magnitude higher than is available on-board in a single
schedule invocation.

Monte Carlo as Shaper of the Plan

Enter the Monte Carlo. With the computational complexity
available in the ground system, a first meta-dimension
perturbs the independent variables of the plan itself – the set
of priorities and constraints that control what plan is
generated. For each resulting plan, a second meta-dimension
perturbs the schedule – how the model encoded in the plan
responds in actual execution, when activities under- or over-
perform in duration, energy, and data usage. As each activity
builds up a history of executions in operations, some of these
performance attributes are expected to be updated in the
sampling distribution used in the Monte Carlo. This is part of
a larger mission objective to feed the fidelity of as-run results
back into the model wherever possible.

A cost function scores the as-run results of each different plan
across the probability distribution of the perturbed schedule
execution for that plan. This is expected to adapt as the
mission progresses and can serve its purpose in forms of
varying complexity, starting quite credibly with the average
of the sum of the duration of all activities that were actually
able to execute completely with success, across the Monte
Carlo distribution. A binary threshold of goodness is
expected to be some high but not too high likelihood that all
required activities will actually have executed successfully at
the end of the plan without undercutting the handover SOC.
If the threshold is not met, the plan is assumed to be “broken.”

10

The unbroken plan with the highest score is what gets sent to
the rover.

Future Reporting

Before operations start in 2020, some of the developmental
challenges relating to OBP and SP are likely to be the subject
of future reporting. This may include the plan generation
process, including what approaches are used to go about
“unbreaking” the plan quickly and intelligently, so that plans
may remain close to saturating a true technical constraint and
campaigns don’t waffle. Verification and validation of OBP
will also be challenging and likely result in lessons learned.

8. SUMMARY
On-Board Planner is a scheduling and execution facility of
the Mars 2020 rover that seeks to more efficiently use
available resources with event-driven, state-responsive
autonomy. Due to computational limitations on the rover,
improvements in efficiency rely as much on the intelligent
programming of a plan as the capabilities of the flight
software. The architecture has focused on providing degrees
of freedom that are sufficient to effectively tune the plan.
Operators will rely on empirical simulations to shape the plan
downstream of the input the operator specifies in describing
the fundamental attributes of each activity.

 ACKNOWLEDGEMENTS
The research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. Copyright
2018 California Institute of Technology. U.S. Government
sponsorship acknowledged.

The author thanks the many engineers at JPL that have
collaborated together to engineer On-Board Planner and
Simple Planner, a partial list of whom include Dan Gaines,
Elyse Fosse, Gregg Rabideau, Eddie Benowitz, Steve Chien,
Wayne Chi, Jagriti Agrawal, James Biehl, Rachael Collins,
Colette Lohr, Usha Guduri, Rajeev Joshi, Glenn Reeves,
Steve Scandore, Vandi Verma, Marcel Schoppers, Jim
Kurien, and Corey Harmon.

 REFERENCES
[1] Prototyping an Onboard Scheduler for the Mars 2020

Rover. Gregg Rabideau, Ed Benowitz. International
Workshop on Planning and Scheduling for Space (IWPSS
2017). Pittsburgh, PA. June 2017 + PDF CL#17-2272

[2] Chi, W.; Chien, S.; Agrawal, J.; Rabideau, G.; Benowitz,
E.; Gaines, D.; Fosse, E.; Kuhn, S.; and Biehl, J. 2018.
Embedding a scheduler in execution for a planetary rover.
In ICAPS

[3] Chi, W.; Agrawal, J.; and Chien, S. 2018. Using Squeaky
Wheel Optimization to Derive Problem Specific Control
Information for a One Shot Scheduler for a Planetary
Rover. In ICAPS

.

11

BIOGRAPHY
Stephen Kuhn received a B.S. in
Mechanical Engineering from Carnegie
Mellon University in 2008 and an M.S. in
Aerospace Engineering from the
Massachusetts Institute of Technology in
2010. He has been the flight systems
engineer for the CHIMRA mechanism on

the Mars Science Laboratory mission, a rover planner on
MSL, and held other systems engineering roles on MSL
and the Mars 2020 missions at JPL. He is the On-Board
Planner flight systems engineer for Mars 2020.

