SSim: NASA Mars Rover Robotics Flight Software

Simulation

Vandi Verma, Chris Leger
Mobility and Robotics Systems Section
NASA Jet Propulsion Laboratory California Institute of Technology
4800 Oak Grove Drive, Pasadena California, USA
vandi @ jpl.nasa.gov, leger @google.com

Abstract—Each new Mars rover has pursued increasingly richer
science while tolerating a wider variety of environmental condi-
tions and hardware degradation over longer mission operation
duration. Sojourner operated for 83 sols (Martian days), Spirit
for 2208 sols, and Opportunity is at 5111 sols, and Curiosity
operation is ongoing at 2208 sols. To handle this increase in ca-
pability, the complexity of onboard flight software has increased.
MSL (also known as Curiosity), uses more flight software lines
of code than all previous missions to Mars combined, including
both successes and failures[1]. MSL has more than 4,200 com-
mands with as many as dozens of arguments, 54,000 parameters,
and tens of thousands of additional state variables. A single
high-level command may perform hours of configurable robotic
arm and sampling behavior. Incorrect usage can result in the
loss of an activity or the loss of the mission. Surface Simulation
(“‘SSim”’) was developed to address the challenge of making full
and effective use of many capabilities of MSL, while managing
complexity and risk. SSim is software that performs rapid con-
text sensitive simulation of flight software. NASA Mars missions
are comprised of three phases: several months of Cruise, a brief
but exciting Entry Descent and Landing (EDL), and a Surface
mission that typically lasts as long as the hardware survives.
SSim is meant for use during the surface phase when the mission
fulfills its primary objectives. The focus of SSim on MSL was the
robotic flight software, including rover mobility and navigation,
robotic arm manipulation, and sample acquisition, processing,
and delivery. It can execute behaviors in simulation a thousand
times faster than they execute in real time on the flight compute
element. SSim is used by rover drivers to develop and validate
command sequences throughout the planning cycle. SSim has
been used to plan all of the Curiosity robotic operations since
landing and is expected to continue to be used for the remaining
life of the rover. Due to the impact of SSim on MSL, the Mars
2020 mission plans to increase the scope of SSim during flight
operations, simulating not only rover planner operations, but
all surface operations, including the instrument, power, thermal
and telecommunication behavior. SSim is part of the Rover
Sequencing and Visualization (RSVP) suite of Rover Planning
tools (Yen, J. et al, 2005). In the paper we provide an overview of
SSim architecture, design, implementation, and usage on MSL,
as well as an overview of plans for Mars 2020.

TABLE OF CONTENTS

1. INTRODUCTION .. .eiieieeensensansanseosascascascanas 1
2. MSL ROVER t1tittinieecensensenssssssssscascascnsans 2
3. MSL OPERATIONS ..ivteutentencsssoscsscencascnsons 3
4. ROBOTIC OPERATIONS . ccueeteteesncesesassacannnes 4
5. MOBILITY AND NAVIGATION ..ccvveeeeecnccancnnans 4
6. ROBOTIC ARM MANIPULATION ...cevieenecnccnnans 4
7. IN-SITU SAMPLING ..etvetenteasaossocsacascascnsans 4
8. SSIM ARCHITECTURE AND DESIGNcccvveneenn. 5
9. SSIM CAPABILITIES e vvveueerereaancesesaasacannnes 7

978-1-5386-6854-2/19/$31.00 (©2019 IEEE

The contributions of co-author Chris Leger were completed between 2009-
2013 when he was an employee of JPL, Caltech

10. CONCLUSIONS .uieteeeeenceresaosacacesassasncesens 9
ACKNOWLEDGMENTS .0itieeenrsnsonssnssssonssncans 10
REFERENCES +.0vtiuteateecencsssnssnssnssnsssssnsonas 10
BIOGRAPHY t.viiviiuieececesscnssnssnssnsssssnssncnns 11

1. INTRODUCTION

Mars science is an active area of research, and there are
500 planetary scientists that participate in MSL operations.
Analysis and discussion of observations made by the rover
typically impact the goals for subsequent observations. Un-
like most deep space and Earth orbiting missions for which
operations are typically planned weeks, months and even
years in advance, Mars rover operations are planned daily
during Mars time operations. Most NASA JPL Mars missions
operate on Mars time for the first three months after land-
ing[2], during which Earth operators align their schedules to
a Martian day, of 24 hours, 39 minutes, and 35 seconds. As
operations transition to a more sustainable range of working
hours on Earth, 1 to 3 Sols of rover operation are planned
each day, other than for special cases such as Mars solar
conjunction. There are additional constraints such as Deep
Space Network scheduling and time of Mars orbiter flybys
over the rover that further limit the time available from when
data first arrives on Earth to when the next plan must be
uplinked to the rover on Mars.

A big factor in determining the scope of the plan for any given
sol is plan complexity and the ability of human operators
to guarantee that the plan is safe and meets the science
and engineering intent in the limited time available. SSim
provides a capability for human operators to quickly check if
their intent is correctly captured prior to execution. SSim has
made it tractable for operators to develop plans with scope
and complexity greater than any previous planetary rover
mission.

SSim enables high confidence in the plan generated on a tight
timeline by using actual flight software code initialized with
current rover state. This enables faithful simulation of subtle
flight software state interactions and potentially emergent
behavior. What differentiates SSim from other software
simulations is that it uses actual flight software instead of a
simplified model, and that the design focus is not on testing
and development, but on operations. Speed, determinism, in-
terfaces for environmental feedback, replicating current rover
state, and high rate visibility into predicted state are therefore
given priority. This does not preclude the use of SSim
during development and testing. SSim was also used during
MSL Systems Integration and Test, ALTO, and Robotic Arm
and Sampling Verification & Validation to simulate most
sequences prior to execution on hardware. Due to the impact
of SSim on MSL, the Mars 2020 mission has increased the
scope of SSim during flight operations, simulating not only

robotic operations, but all surface operations, including the
instrument, power, thermal and telecommunication behavior.

SeqGen[3][4], as implemented for rover missions, produces
many false positive and warnings, and many errors are not in
scope. In addition, it takes tens of minutes of assess command
sequences for complex plans.

WSTS (Work Station Test Set) is a software simulation
used by missions for testing during development. It runs
on a VxWorks emulator and simulates Flight Software. It
includes models of low-level interactions such as 1553 bus
traffic. It is valuable for testing FSW. However, it has limited
interfaces for environmental feedback and can only run about
six times real time and does not currently have the capability
to initialize to current rover state, limiting its use for rapid
operations.

Rover Analysis, Modeling and Simulation (ROAMS) [5] is a
physics based dynamic simulation. Its focus is on analysis,
design, development and testing of robots. SSim could for
example be interfaces to a simulation like ROAMS for sensor
and environmental feedback. There are additional multi-body
dynamics simulations such as Automated Dynamic Analysis
of Mechanical Systems (“ADAMS”) [6].

Mobility Mechanics Modeling Toolkit (M3Tk) [7] contains
basic kinematics, inverse kinematics, dynamics and inverse
dynamics capabilities for articulated multi-rigid body sys-
tems. A research project created a model of MSL that
included modeling the rovers inertia, dynamics and wheel-
ground contact in M3Tk and provided feedback to SSim.
Although the current M3Tk based MSL simulation takes
tens of minutes to run, optimizations are ongoing. There
are additional approaches for high fidelity wheel terrain
interactions[8][9]. These approaches could all be used to
provide alternate sensor and environment feedback to a SSim
simulation.

Gazebo is a 3D rigid body simulator for robots. It is de-
signed for software testing via dynamic simulation of robot
responses to software stimulus via ROS (Robot Operating
System) [10] interfaces. The same ROS interfaces can be
used to control real hardware and the simulated robot in
Gazebo. SSim could be interfaced to Gazebo for visualization
and environmental feedback via a ROS interface in a manner
similar to the RSVP visualization to which it currently inter-
faces.

SSim has influenced a number of additional custom software
in the loop simulations since its development in 2009 and
Mars operation starting 2012.

2. MSL ROVER

Figures 1 and 2 show the MSL rover, which is a 6-wheel
rocker-bogie suspension vehicle with 4 independently steer-
able corner wheels. It has a 2.1m long robotic arm with five
degrees of freedom (DOFs) that deploys two turret mounted
instruments and 3 mechanisms - a 4 DOF rotary percussive
drill to collect powered samples from rocks (Drill), scoop
for soil collection (CHIMRA Scoop), 4 DOF sample pro-
cessing and delivery mechanisms that can sieve and prepare
portions and deliver them via actuated inlets to instruments
(CHIMRA Imm and 150um sieves, Portioner, Scoop, Tunnel,
and Thwackers), and a brush for removing dust from surfaces
(Dust Removal Tool). The rover is 3m long with its robotic

Figure 1. MSL Self-Portrait beside Windjana Drill holes
on Mars.

_— RUHF Antenna

Mastcam

REMS
High Gain
Antenna

(CheMin, SAM inside the rover) Mobility System

Figure 2. Simplified MSL rover.

arm stowed, 2.7m wide and 2.2m high at the top of its
mast. Navigation makes use of stereo cameras, including
wide-angle (120°) field of view (Hazcam) cameras mounted
in the front and rear of the chassis, and a pair of stereo
navigation cameras (Navcams) with a field of view of 45°
on the mast. With additional science imagers, 17 cameras are
used by Curiosity. It weight 899kg and carries a payload of
ten science instruments totaling 75kg - Alpha Particle X-ray
Spectrometer (APXS), Chemistry and Camera (ChemCam),
Chemistry and Mineralogy (Chemin), Dynamic Albedo of
Neutrons (DAN), Mars Descent Imager (MARDI), Mars
Hand Lens Imager (MAHLI), Mast Camera (MastCam), Ra-
diation Assessment Detector (RAD), Rover Environmental
Monitoring Station (REMS), and Sample Analysis at Mars

SAM).

3. MSL OPERATIONS

MSL is a science-driven mission. Mars science in an active
area of research, and the science team revises its hypotheses
and updates its goals for subsequent observations based on
science discussions and analysis of the latest data from Mars.

Considerable simplification of rover commanding can be
achieved by commanding in an event-driven manner. This is
the approach used by MSL activities and is based on the prior
Mars Exploration Rover sequencing model. The sequencing
language allows nested conditional if-then-else branching on
spacecraft state and time. There are 16 sequencing engines
to run parallel sequences. The Master sequence controls the
overall execution of the plan with the determinism of fixed
allocations that are not event-driven.

MSL tactical operations is based on MER operations [2] and
described in[11]. Operations consist of a series of working
meetings briefly summarized below to discuss, develop and
validate the plan, between which different roles perform their
work.

Strategic Planning

The strategic planning process defines the long-term plan
for the mission. Mars exploration missions have high-level
science goals. Guided by these the science team develops
strategic mission plans of varying horizon [12]. The time
horizon of strategic plans may be on the order of months or
years. Strategic targets can be identified from orbital images
weeks in advance. However, as higher resolution surface
imagery and data are available from the rover the shorter
horizon plan may change. The daily planning of activities
that respond to the data from the previous sol is referred to
as tactical operations [2]. The Supratactical planning process
bridges the gap between strategic and tactical planning. It
maintains a detailed plan on the horizon of a week or month
to ensure the constraints over a span of the science campaign
are planned.

Look Ahead Planning

MSL has a large suite of instruments and sampling capa-
bilities that are deployed to get correlated measurements on
targets at a location of high science value. Look-ahead
planning is the core of the Supratactical process. It folds
in the variations from the tactical process into the short-
term horizon, optimizing dependencies, resource usage, and
constraints. Look-Ahead planning is conducted daily in
parallel with tactical planning. The upcoming look-ahead
schedule is revised based on new information.

TACT

The Tactical Activity Coordination Tagup is the first meeting
in the tactical planning day. It occurs soon after the science
and engineering teams have made a preliminary assessment
of the data received from Mars. New engineering constraints
for the plan are summarized, such as power, bandwidth, and
communication pass times. The science team outlines the
science activities under consideration for the plan guided
by the Look-ahead plan. Following this, the science and
engineering teams work on plan fragments, or abstractions of
each activity. This determines which activities can feasibly
fit within the constraints. At this stage, rover planners work
closely with the science team and may run SSim interfaces

dozens of times. These include checking arm configurations
on desired targets, visualizing clocking of tools and instru-
ments with respect to terrain features, stamping the footprint
of the brush area on the surface, and using the rover collision
model to visualize the interaction of the robotic arm turret
with the terrain.

SOWG

At the Science Operations Working Group meeting, the team
evaluates whether the combined fragments of planned ac-
tivities fit within the overall predicted resource constraints
for the plan, including time, energy and data volume. If
constraints are violated, changes are made to the plan, which
may include reducing the scope of activities or removing
them from the plan. By this time, rover planners must have a
rough draft of expected commanding, including a reasonable
estimation of duration of activities. This impacts the usage
of resources and whether activities can complete in the time
they’ve been allocated. Rover planners derive durations by
running SSim on draft sequences. A given Sol’s activities
can be implemented in different ways that affect the duration
of the activity. For instance, a single change in arm con-
figuration could add as much as three minutes in movement
duration and trigger a requirement to close and re-open an
instrument cover, adding another five minutes. Since science
observation sequences at specific arm positions may not be
ready at this time, there is a mechanism for adding context-
sensitive placeholder duration. One example of the sensitivity
of execution to absolute time is the effect of rover body
and terrain shadows, which can adversely affect science and
engineering images. The evaluation of shadows with SSim-
based tools can inform where in the plan the rover planner
sequence is placed. Alternatively, activities within a long
rover planner sequence may be reordered, or the rover planner
sequence may be interleaved with other science observations.

APAM

At the Activity Plan Approval Meeting, a visualization of
the activities is presented, and a final check of resources is
performed. A poll is taken from the various engineering
and science teams responsible to approve the aspects of
the plan for which they are responsible. The visualization
is generated by running a SSim simulation. Prior to this,
rover planners typically run dozens of simulations and revise
their commands based on SSim simulation results. More re-
cent SSim-based tools such as ArmSketch automatically run
dozens of parallel SSim simulations to evaluate constraints
and optimize the trajectory of arm motion.

Master / Submaster Walkthrough

The team reviews select tactically developed sequences that
implement the activities in the plan. The visual pose and
context of the rover at each command is shown. This is based
on SSim callbacks and library calls at the start and end of
each command.

Sequence Report Walkthrough

SSim and rp-check [4] are run to perform a validation check
of the final rover planner sequence. Rp-check statically
checks the command sequence against a database of rules
and is equivalent of programming language analyzers like
lint[13]. Subsequently a combined validation check of the
integrated sequences is performed. On MSL, this is done via
Seqgen [3], which is based on SSim-provided input for rover
planner sequences. On M2020, the current plan is to perform
this via SSim as well. At the Sequence Report Walkthrough,

the team reviews results and dispositions unexpected viola-
tions.

CAM

At the Command Approval Meeting, a final review of all the
files to be uplinked to the rover is performed.

There are additional activities performed for strategic and
supra-tactical planning[12] for which SSim is also typically
used.

4. ROBOTIC OPERATIONS

Rover drivers (also known as rover planners) are the human
operators that control robotic arm, mobility, and sampling on
Mars. This includes navigating the rover from one location to
another, commanding the robotic arm to position all robotic
arm-mounted instruments and tools, operating sample collec-
tion, processing, and delivery mechanisms, and handling all
the coordination constraints, safety checks and state.

5. MOBILITY AND NAVIGATION

Rover drivers are responsible for generating the sequence of
commands to safely navigate the rover from one location to
the other. This may consist of precision drives to position
targets in the arm workspace for a variety of constrained ob-
servations in a sampling campaign, or a hundred meter drive
navigating around sand traps and craters. Rover drivers select
between different methods for driving the rover depending on
the terrain, their ability to resolve it in imagery, and the short-
and long-term science intent.

Directed driving

Directed driving is also called “blind” driving and is used
to command the rover to drive a certain distance over ter-
rain that can be manually evaluated as safe. Images in
the drive direction from previous rover positions are used
to generate a 3D terrain mesh and feed this into a visual
simulation[14][15][16] evaluate the terrain. No on-board
terrain evaluation and navigation is performed for such drives,
which are therefore fastest. Reactive checks of rover state,
such as constraining suspension and attitude, may still be
performed to stop the drive.

Visual Odometery

Visual Odometery (VO) is used for more accurate position
estimation. The rover tracks features between image pairs
to compute the vehicles six degree-of-freedom position and
attitude change based upon observed relative displacement of
features. Depending on the terrain and the accuracy needed
for science and safety, rover drivers choose the amount of
VO to perform. It may be performed at every step, for select
waypoints, or periodically, such as in sandy terrain to ensure
the rover is not spinning its wheels or digging into sand.

Autonomous Navigation

Autonomous Navigation (AutoNav) takes stereo images,
evaluates hazards and then selects drive paths. This requires
on-board terrain analysis, and on the 133 MHz RAD750
processor, when AutoNav is performed in conjunction with
VO, autonomous drive rates are almost six times slower than
those when driving blind. However, it allows the rover to
safely navigate over terrain that is unknown to operators. A

Figure 3. MSL Robotic Arm and Turret.

variation of AutoNav called “guarded” mode permits directed
motion over terrain that is unknown to operators, which only
executes if AutoNav evaluates the path to be safe.

6. ROBOTIC ARM MANIPULATION

Figure 3 shows the five degree-of-freedom robotic arm, which
is used for positioning turret-mounted instruments and tools
with respect to Mars surface and rover-mounted targets.

Figure 4 shows the turret-mounted tools and instruments.
Rover drivers must assess and manage clearances between
the turret and terrain. Millimeter-level positioning accuracy
is needed from the 100kg arm and 0.6m diameter turret,
which is 33kg of the weight. The quality of the science
data collected from the turret-mounted Alpha Particle X-ray
Spectrometer (APXS) and Mars Hand Lens Imager (MAHLI)
instruments can depend on the accuracy of placement on a
feature of interest. In addition, these instruments can easily
be damaged by collision with the terrain if placed incorrectly.
For example, the MAHLI lens cannot be allowed to contact
the surface, yet must regularly be placed within centimeters
of it for the best science data. The Dust Removal Tool (DRT)
brushes can be bent if not spinning when moved to contact
the surface. Robotic arm flight software compensates for
sources of error including deflections, backlash, and thermal
distortions.

7. IN-SITU SAMPLING

MSL is the first rover to perform in situ sampling on Mars.
It is designed to acquire rock and regolith samples from
the surface, sieve them to acquire particles that are less
than 150um or Imm and deliver small portions via actuated
inlets into SAM and Chemin instruments. SAM analyzes
chemistry, including carbon chemistry, and Chemin uses X-
ray diffraction to study mineralogy. The sample must then be
cleaned from the system and a visual inspection of the turret
performed prior to the next sampling. In order to perform

INSTRUMENTS

Figure 4. MSL turret showing instruments and tools.

Drilled Sample enters

Mechanisms
Closed

‘Sample Transfer
ube

Vibe |
Mechanism c-‘,.
¥

Scooped
Sample
enters

Processed
Sample exits

Scooped

Mechanisms Open Sample enters

Figure 5. Sample pathways through the CHIMRA tool
on the MSL turret.

its functions, the Sample Acquisition/Sample Processing and
Handling (SA/SPaH) system consists of 17 actuated degrees
of freedom (four on the drill, four on CHIMRA, one on the
DRT, five on the Robotic Arm, and three on the Inlet Covers).
Some actuators have resolvers, and there are force sensors
and contact switches. These 17 degrees of freedom are used
in a carefully choreographed manner to perform sampling
operations.

The properties of Mars samples was unknown prior to land-
ing. Commanding had to be designed to evolve with the
mission. The motions are therefore composed of commands
that are reconfigurable. Figure 6 shows a flowchart of the
high level sampling commands and the various pathways that
may be used tactically depending on science and engineering
goals. The arm must reposition Drill and CHIMRA with
respect to gravity for sample flow. Therefore, the specific arm
trajectory varies with the rover attitude, which changes with
the terrain. Some of the CHIMRA sample flow pathways that
must be achieved by coordinated motion of the Robotic Arm
and CHIMRA joints are shown in Figure 5. There is risk of
hardware damage if these are executed incorrectly. The exact
motions can vary based on rover state. Rover Planners are
responsible for ensuring safety for the robotics components

H00000e

Figure 6. Flowchart of high level sampling commands.

at all times.

8. SSIM ARCHITECTURE AND DESIGN

Flight software follows a rigorous development and review
process. The software is extensively tested at various levels
from unit tests, to Flight software Integrated Tests, Sys-
tems Integration and Tests with hardware, Verification &
Validation at various levels, and Assembly Launch and Test
Operations. However, MSL flight software is one of the most
complicated aspects of the spacecraft. This is reflected by
a quote from the MSL project manager prior to landing on
Mars:

“I'm not worried that the radar will not perform. We've
tested the hell out of that, and we got good performance off
the radar. I'm not worried that the engines are not going to
fire. I'm not worried that the parachute’s not going to inflate,
but I am worried that there’s a bug in the software that we

haven’t caught yet, and that we don’t know about, and it will
come and bite us on a bad day.”[17]
-MSL Project Manager, Pete Theisinger

SSim Guiding Principles

SSim design was based on three guiding principles:

o Use actual Flight Software code to simulate subtle Flight
Software state interactions and emergent behavior.

« Make execution fast, portable, and repeatable by abstract-
ing all hardware interfaces to allow running entirely on Linux.
Abstract any flight software modules where modeling a sub-
set of flight software behavior is sufficient.

« Replicate on-board state by using telemetry received on
ground to initialize simulation.

Simulating flight software in large part as-is allows rover
drivers to predict with high accuracy behavior in a given
context. If the behavior deviates from expectation it allows
us to compensate for it. There is complementary value in
predicting expected modeled behavior as well. For this MSL
rover drivers use rp-check in addition for static sequence
checking[4].

High-level MSL flight software architecture

MSL flight software architecture is based on the MER archi-
tecture. As described in [18] and [19]. Flight Software is
a collection of modules. The design emphasizes interfaces,
encapsulation and modularity between modules. Modules are
arranged in layers for which the lowest layer interfaces with
hardware and the highest layer encodes the behavioral logic.
Flight software runs on the VxWorks real time operating
system. It consists of multiple preemptive prioritized tasks
(threads). Not all modules have tasks. Some modules may be
libraries. Other modules have multiple tasks such as the seq
module which implements the sequencing capability and has
16 tasks, one for each sequence engine. Modules communi-
cate via Inter Process Communication (IPC) messages, which
are implemented via VxWorks pipes.

Some core principles of the MSL flight software architecture,
which are common to most robotic spacecraft developed by
NASA Jet Propulsion Laboratory, are as follows[19]:

1. Modules communicate asynchronously via messages

2. Each task executes an event loop which processes the
arriving messages.

3. The task waits only on message arrival, at only one point
in the code, and acts on the message according to the modules
top-level state machine. One of more Finite State Machines
are regularly used to process messages.

4. All modules are initialized before any module is activated.
5. Flight software autocode generates module initialization,
command parsing, message handling functions

6. Multi-threaded concurrent with real time constraints

7. A finite state machine module initializes and activates all
other modules, spawns tasks and manages redundant comput-
ers.

High-level SSim Flight Software Simulation Architecture

Flight software runs on-board the rover on Mars and has real
time constraints. It is multi-threaded and non-deterministic.
For purposes of providing feedback to rover drivers, the
simulation needed to be repeatable, and hence deterministic.
It needed to be hundreds of times faster than real time since
taking an entire day to simulate a full Sol’s plan was not use-
ful. Rover drivers typically run many dozens of simulations

during an average planning cycle. The SSim architecture
takes advantage of the flight architecture to make simplifying
assumptions. In SSim as in flight software:

1. Modules communicate via IPC messages

2. Each task executes an event loop which processes the
arriving messages.

3. The task waits only on message arrival, at only one
point in the code, and acts on the message according to the
modules top-level state machine. One of more Finite State
Machines are regularly used process messages. Most of
the surface robotics module use Hierarchical State Machines
(HSMs)[20].

4. All modules are initialized before any module is activated.
5. Flight software autocode generates module initialization,
command parsing, message handling functions

6. Multi-threaded concurrent with real time constraints

7. For repeatable determinism, SSim is Single-threaded con-
current since it doesn’t have real time constraints. SSim
initializes and activates all modules without spawning tasks.

Like Flight Software, SSim is written in C/C++ with flight
software coding standards. On MSL, it is part of the flight
software repository but is not part of the flight binary. On
M2020, SSim is in an independent repository and accessible
to a suite of M2020 Mission System tools. It will run on

GovCloud? to support these tools.

SSim Input

To initialize to match the state of the rover on Mars, SSim
takes as input flight software state. SSim can also record
the state resulting from sequence execution. This state can
be used to initialize subsequent SSim simulations if multiple
Sols are being planned back to back without intermediate
data from Mars. Command sequences are input to SSim
in Flight Software sequence binary format. The RSVP tool
uses the Rover Markup Language (RML) for user interface
and editing. The format allows users to provide additional
simulation only options that are mapped to simulation-only
Flight Software commands. The sequences are then con-
verted to the Flight Software sequence format. Sampling
scripts that provide the parameterized decomposition of high-
level sampling commands as described in section 7, are also
provided as input via files. RSVP provides feedback on
the environment via rover settling, slip models, and terrain
classification.

On MSL this ground derived reflection of on-board state is
referred to as “NPM” since the state is stored in Non-volatile
Parameter Memory flash on the rover. SSim based automated
stand-alone tools are used to generate ground based NPM.
These tools take as input prior state and new telemetry
received on the ground and convert them to spacecraft and
simulation only commands that are executed through SSim.
By stubbing the interface flight software uses to write to on-
board NPM memory SSim produces files replicating NPM.

Environmental feedback

Planetary robots face the challenge of considerable variability
from environmental interaction. There is high variance in the
terrain MSL encounters on Mars and the targets and material
with which the robotic arm and sampling systems interact.

2AWS GovCloud (US) is an isolated AWS region designed to host sensi-
tive data and regulated workloads in the cloud, helping customers support
their U.S. government compliance requirements, including the International
Traffic in Arms Regulations (ITAR) and Federal Risk and Authorization
Management Program (FedRAMP).

The simulation therefore provides callback functions to pro-
vide feedback, such as rover attitude and suspension settling
on terrain. This terrain is built by generating a 3D terrain
mesh by performing stereo processing on the images we get
from Mars using stereo vision cameras. For autonomous
navigation beyond the range of the navigation cameras, lower
resolution localized images are used, which are taken from
orbital cameras such as HiRise on the Mars Reconnaissance
Orbiter.

Where sufficient information about the environment is lack-
ing, such as force sensor feedback and weight on drill bit
while drilling into a rock, a model is averaged from past flight
data. This results in some rate of penetration, which may
vary on Mars and is compensated by allocating margin for
the allowed maximum duration for the activity. Planetary
exploration involves daily robotic interaction with features
no human has ever seen before, so bounding the expected
hardness and adding fault protection in flight software is part
of the design.

9. SSIM CAPABILITIES

SSim was developed to address the growing complexity and
challenge of driving, operating the robotic arm, and sampling
on Mars. With user input and environmental feedback from
other RSVP components, some of the capabilities it provides
are as follows:

Predict plan execution

SSim predicts plan execution so rover planners can validate
that no unexpected errors are present and that the behavior
meets their intent. SSim will regularly trigger valid errors
during the early stages of sequence development, and it
would be unusual to get through a planning cycle without
SSim having signaled an error. As described in Section 3,
there are 16 sequencing engines that may be used during
planning to issue commands in parallel. This includes activity
constructs in which sequences ping-pong back and forth,
invoking each other based on state triggers to implement a
self-sustaining complex behavior. Rover drivers need to be
able to visualize and inspect sequence execution to determine
whether the plan is achieving the desired intent. An example
of one of the types of high-level visualizations is shown in
7. The simulated path depends on parameters including the
maximum step size between visual odometry (VO) positions,
which cameras to use for VO, and the rover positions in which
to take the images. There may be high level commands to
stop for mid-drive imaging iteratively every few meters, or
at a specific location. The lighting for the VO images may
be impacted by terrain interactions and slip, since the drive
through a sandy patch may take extra steps to compensate for
slip and occur later.

Predict rover safety risks

MSL is sometimes called the swiss army knife of rovers. It
is capable of a wide range of activities. A large proportion of
robotics commands also have high frequency environmental
interactions. SSim simulations allow context-sensitive visu-
alization of these commands. The joint angles for deploying
the arm positioning the MAHLI imager within a centimeter
of the surface may be safe in one context. In another context,
or if the terrain were mis-modeled, the robotic arm could be
permitted to collide with a terrain feature. Another example
of hardware safety risk is described later in section 9 on SSim
monitoring of cached sample.

Prevent loss of science

Flight software is designed to ensure hardware safety. How-
ever, the safety check logic can trip in conditions humans
know to be benign. This is aggravated when rover capabilities
are used in new ways. SSim helps ensure they don’t result in
the loss of activities.

Predict state interactions

Reconfiguration of low-level parameters and state may
change high-level behavior and interaction. It is important
to be able to predict what the rover will do not only at a high
level, but its effects on state and environmental interactions
that could have subtle consequences. Early in the mission,
SSim modeled the MastCam only at an abstract level. How-
ever, when Curiosity wheels started showing excessive wear,
high resolution MastCam images of the wheels were taken.
Flight software will not permit any mobility if the focus
mechanism is not in the stowed position. However, one
drive also included VO for accurate position estimation, and
the seed image was taken prior to first motion. VO has an
efficiency option that allows skipping the extra imaging if
driving is disallowed. A subtle state interaction is that the
VO command unconditionally reinforces the state indicating
whether driving is allowed. Since this wasn’t a drive motion
command, and there was no real risk to the MastCam, it went
unnoticed and resulted in failing the entire drive that Sol.
Following this, the scope of SSim was extended to include
modeling the MastCam. Another example is the use of SSim
to model state interaction from Chemcam LIBS firing. The
Chemcam instrument on MSL is the first planetary science
Laser-Induced Breakdown Spectrometer (LIBS). The LIBS
instrument uses powerful laser pulses, focused on a small spot
on target rock and soil samples within 7 m of the rover, to
ablate atoms and ions in electronically excited states from
which they decay, producing light-emitting plasma. The
plasma light is collected by a 110 mm diameter telescope and
focused onto the end of a fiber optic cable. It is a powerful
science instrument that allows remote elemental analysis with
no sample preparation. However, the operations team must
ensure that the LIBS beam is not fired on any part of the rover
itself which would result in a fault. The libs beam is modeled
as part of the rover self-collision model and SSim is used to
check if LIBS targeting in terrain relative frames may result
in the LIBS laser intersect the rover body.

Predict environmental interaction

Flight software state variables in SSim are initialized with
telemetry from Mars that affect behavior. For example,
the rover attitude can impact arm trajectories via deflection
compensation, or if the arm end effector is being commanded
with respect to gravity. This could impact the relative position
of the arm with respect to the surrounding hardware and
result in a collision. In other cases, RSVP is used to provide
feedback on rover pose via a slip model. This can be used to
detect excessive slip faults.

Speed

During planning, rover drivers generate tentative drive and
arm trajectory sketches and repeatedly simulate with SSim
and inspect the outcome. Using this feedback, they can apply
their full range of expertise to revise the plan to meet the high-
level intent.

Humans, even domain experts, are not suited to mentally
tracking hundreds of thousands of variables, but they are good
at evaluating high-level intent.

To be useful for human operators to iteratively simulate and
revise the plan on a tight timeline, the feedback needs to be
fast.

Options for simulating off-nominal paths

Mars rover Flight Software is designed to put the rover in
a safe state if a fault is detected. Historically, Mars mission
operations simulate the nominal path and not any contingency
commanding to account for uncertainty and faults. However,
there are mechanisms for simulating off-nominal execution
paths in SSim. Any conditional ”if” statement can be forced
to specifically take either the “then” or the “else” execution
path. Typically, the execution of conditionals is based on
evaluation of the conditioned expression given the rover state
at that point in SSim execution of the sequence. Alternately,
motion mechanisms have stop commands that will interrupt
ongoing motion. There is a mechanism to issue commands
via the RSVP toolset that are only sent in simulation and
not in flight. This can be used to test off-nominal paths that
interrupt ongoing motion, say of the robotic arm. A parallel
test sequence is typically executed in SSim that triggers a
stop. Various criteria such as absolute or relative time, or
when a particular command in the sequence under test starts
execution, may be used to issue the stop.

Visual Odometry

Visual Odometry (“VO”) enables the rover to accurately track
its position relative to ground-identified hazards and traverse
goal locations in the presence of slip[21]. Although VO on
MSL is considerably faster than on previous Mars rovers it
still takes on the order of ~45sec per step, so it is used
judiciously. In addition, it has constraints on number and
distribution of features on which successful stereo correlation
can be performed in the image pairs being compared. Point-
ing for VO images can be in any coordinate frame relative
to the rover, or a fixed surface site frame. SSim provides
hooks for feedback from slip models. VO flight software in
SSim provides slip model estimated position delta if enabled.
Hence, if the command sequence being developed does not
perform VO updates, the rover tracks in simulation will
deviate from expected surface slip tracks as the rover on Mars
would be oblivious to real slip, and if VO is used the rover
commanding in simulation and on Mars would compensate
for drive direction slip. Figure 7 shows a drive with VO at
Marias Pass on Mars simulated with SSim.

Uncertainty

One of the mechanisms in SSim for accounting for uncer-
tainty is via margin or “halos.” SSim halos are extra margin
that can be added to safety checks when simulating. Com-
mands sent to Mars do not include the margin. These halos
allow the simulation to be robust to execution uncertainty and
differences between on-board state and state available during
simulation. Commands will trip Flight Software checks in
SSim if the margin is insufficient. Some examples are rover
tilt, rocker/bogie suspension, and yaw limits, margin that
can be added to Keep-Out and Keep-In Zones which are
rover planner designated bounding areas that the rover will
not enter or exist respectively and extra margin that may be
added to rover self collision checks. Another example is the
halo SSim can add to the rover self collision model. Every
robotic arm command sequence is required to pass SSim
simulation with at least 3mm of self collision margin to allow
for uncertainty between Earth simulation and Mars execution
such as due to thermal impacts on hardware.

simulation. This makes it easy for rover drivers to get

feedback on why the commanded arm motion failed, for
example due to failure to find an inverse kinematics solution,
or joint limit, or collision, etc. This allows for fast targeted
correction of the sequence.

Frame transforms

There are over a hundred coordinate frames that may be
used for commanding. Some are rover body relative and
other are surface relative. SSim uses frame transformation
flight software to perform coordinate transforms similar to
the vehicle on Mars. SSim allows quickly checking impacts
on the remainder of the plan from changes in frames. For
example, there are times when surface targets are modified
later in the planning day when new information is available
either from Mars or due to maturation of the plan. There are
cases when modifying the target frame results in a Checam
LIBS collision with rover hardware when there was none
when firing LIBS at the previous target frame. Simulating
via SSim detects such conflicts and allows for them to be
resolved.

Sampling

For each of the configurable high-level sampling commands
in Figure 5 SSim simulates the low level behaviors and state
interactions for a rover planners to evaluate. The intent of the
blurred figure is to communicate the scope and dependencies
of the high level commands. Grey rectangles in the figure
represent high-level commands where a single command
performs behaviors such as “transfer drilled sample” or “pre-
pare a sample portion”. Each of the high level sampling
commands shown can consist of as many as 200 lower level
commands. To provide a sense of the scale of mechanism
motion for sampling, the arm Rover Motion Counter (RMC)
in the first MSL sampling site frame at Rocknest alone ended
up at 4808. As it increments at the start and end of each arm
move, single joint or compound movement of the arm was
commanded 2404 times. By comparison, at the end of the
nearly yearlong journey Opportunity made through Victoria
Crater, operators had commanded movement of the arm (or
Instrument Deployment Device) 2303 times. The number
of via points for an average low-level MSL arm move is
much larger, and this doesn’t take into account CHIMRA
actuation. In addition to the tactical usage of SSim, it
was also used extensively for the development of the high-
level sampling behaviors that must be evaluated for sampling
and other safety constraints for the range of environment
and rover state in which they may be used. One example
is the usage of SSim for computing tilt robustness of the
high level sampling commands by running tens of thousands
systematic simulations over the tilt cone. In operations rover
planners use tilt plots similar to these to guide final position
during drive approach to a sampling site, or to select between
different configurations for sample dropoff. Figure 8 shows
one such example of a resulting tilt plot.

Mast mounted cameras

On MSL, the mast has two degrees of freedom for nomi-
nal operations usage. Imaging commands can point mast
mounted cameras in a variety of co-ordinate frames. The
mast is used for Visual Odometery, Autonomous Navigation,
Chemcam observations, and other science and engineering
imaging. At times coordinated arm and mast motions are
used for turret inspection or for inspecting hardware on the
mast. SSim is used to develop and validate these to ensure
that the imaging intent is met, the pointing is safe, and the
field of view is adequate.

RSVP Qard

Elevation Azimuth

H Disparity: ——————— T

[X] Use Up-Vector from SITE
[] Lock Camera to Selection

Disparity Controls

Opacity of Non-Selected Images: Opaque

Jods/surfa m/NLE_
Jods/surfac am/NLB_
odsi:

LFO48L124N MG
LF048L194NCs MG

sisurfa mNLB_ LF0481194N MG
Jods/surface/sol/00992/0pgs/rdr/ncam/NLE_485560419RASLF04B1194NCAMO0272M1 IMG

(il

Eye: [DEFAUT =
o Horizontal
e e
[
K10)

Figure 7. SSim simulation of VO drive in RSVP.

+ Pitch (back)
180°

+ Roll (starboard)
~
o

3cm

0
- Pitch (forward)

Figure 8. SSim based tilt plot showing collisions in red
for dropoff to SAM1 via the 150um sample processing
pathway.

Extending Flight Software Capability

After the first drilling operation at John Kline, the science
team requested the capability to cache the sample and drive
so that subsequent portions could be generated from that
sample to deliver to SAM, while still allowing driving to
alternate locations and using the arm for contact science along
the way. SAM can run different variants of its analysis
for each delivery. Updating on-board flight software is a
long process, and so SSim was updated to monitor the turret

gravity vector and track 34 sampling states. If constraints that
can potentially damage sampling hardware are violated, SSim
generates an error. Figure 9 shows MAHLI cached sample
contact science using SSim monitoring. Additional details on
the cached sample capability are provided in[22].

10. CONCLUSIONS

High speed simulations such as SSim that use the actual
Flight Software can provide a powerful analysis, testing and
operations capability. They remove the need to replicate in
models the behavior of increasingly complex Flight Software.
The determinism of the simulation makes it valuable for
integrated software regression testing.

SSim has fulfilled the need for predicting the behavior of
semi-autonomous systems. It has been used for every MSL
robotic operations plan since landing in 2012.

Future missions and robotic systems can benefit from follow-
ing this approach. Regardless of the level of autonomy, there
is eventually human intent behind robotic systems. SSim
provides a capability for human operators to quickly check
if their intent is correctly captured by the robot prior to
execution. In addition, its speed makes it an effective re-
gression testing tool for simulating with a variety of different
initial and intermediate states and environmental feedback. It
provides the ability to directly alter and query Flight Software
state that may not be exposed via commands and telemetry.
It can also be used to sample a solution space to ensure
robustness.

Mars 2020 has decided to extend SSim usage and use it
for the validation of all sequences in the integrated plan for
the sol including instruments and infrastructure. In addition
the operations team plans to reduce the amount of review

o 5
= 0
=]
-

o W
& T o
= "
u w
= L]
& . % -]
o F r o L] =9

P E % ~
L*
£
b TS
[a@i)

Figure 9. MAHLI contact science with SSim cached sample monitoring.

and allow the simulation to highlight the failures to bring
to attention. Mars 2020 SSim regression tests often inform
Flight Software developers of bugs during development.

ACKNOWLEDGMENTS

The research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with
the National Aeronautics and Space Administration. Sev-
eral MSL and Mars 2020 flight software team members, in
particular Joseph Carsten, Todd Litwin, Dan Helmick, Won
Kim, Mark Maimone, Dan Gaines, Jeff Biesiadecki and MSL
RSVP development team members, in particular Jeng Yen,
John Wright, Frank Hartman, Steven Myint, Nick Wiltsie,
Scott Maxwell and Brian Cooper have contributed to it in
many ways. Thanks to MSL Engineering operations team, in
particular James Borders, Liz Duffy, Megan Richardson, and
Esteben Rodriguez, Arm and sampling systems engineering
team in particular Matt Robinson and Stephen Kuhn, MSL
rover drivers, and tactical operations teams for feedback and
suggestions. Thanks to MSL and M2020 projects, specially
Jim Erickson, Alicia Allbaugh, Andy Mishkin, and Jennifer
Trosper for supporting this work. Thanks to the Mars 2020
SSim team, specially Steven Myint, Daren Lee, Kris Wehage,
Luis Fischer, Trevor Reed, Viet Nguyen, Jeng Yen, Jay
Torres, Usha Guduri, Jim Kurien, Rachel Collins, Collette
Lohr, Brian Roth, Nick Rossomando, Sean Wenzel, and Jigna
Lad for pushing the envelope and for new things to come.

REFERENCES

G. Holzmann, “Mars Code,” Communications of the
ACM, vol. 57, no. 2, pp. 64-73, Feb. 2014.

A. H. Mishkin, D. Limonadi, S. L. Laubach, and D. S.
Bass, “Working the Martian Night Shift: The MER
Surface Operations Process,” IEEE Robotics and Au-
tomation Magazine, vol. 13, no. 2, pp. 46-53, 2006.

A. Patrikalakis and T. OReilly, “Advances in discrete-
event simulation for MSL command validation,” Delft
Netherlands, 2013.

M. W. Maimon, S. Maxwell, J. J. Biesiadecki, and
S. S. Algermissen, “RP-check: An Architecture for
Spaceflight Command Sequence Validation,” 2018.

[1]

(2]

(3]

[4]

(5]

A. Jain, J. B. Balaram, J. Cameron, J. Guineau, C. Lim,

(6]
(7]

(8]

(9]

[10]

(11]

(12]

(13]
[14]

[15]

[16]

10

M. Pomerantz, and G. Sohl, “Recent developments in
the roams planetary rover simulation environment.” in
In Proceedings of 2004 IEEE Aerospace Conference,
Big Sky, Montana, Mar. 2004.

B. Trease, “Adams-Based Rover Terramechanics and
Mobility Simulator ARTEMIS,” 2013.

R. Mukherjee, S. Myint, J. Chang, 1. Kim, J. Craft,
M. Pomerantz, J. Kim, and L. Peterson, “M3tk: A
Robot Mobility and Manipulation Modeling Toolkit.”
in ASME 2014 International Design Engineering Tech-
nical Conferences and Computers and Information in
Engineering Conference, vol. 7, Buffalo, New York,
USA, Aug. 2014.

F. Zhou, R. E. Arvidson, K. Bennett, B. Trease, R. Lin-
demann, P. Bellutta, K. Iagnemma, and C. Senatore,
“Simulations of Mars Rover Traverses,” Journal of
Field Robotics, vol. 31, no. 1, pp. 141-160, 2014.

J. B. Johnson, A. V. Kulchitsky, P. Duvoy, K. lagnemma,
C. Senatore, R. E. Arvidson, and J. Moore, “Dis-
crete element method simulations of Mars Exploration
Rover wheel performance,” Journal of Terramechanics,

vol. 62, pp. 31-40, Dec. 2015.

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,
L. Leibs, E. Berger, R. Wheeler, and A. Ng, “ROS: an
open-source Robot Operating System.” 2009.

D. Gaines, G. Doran, H. Justice, G. Rabideau, S. Schaf-
fer, V. Verma, K. Wagstaff, A. Vasavada, W. Huffman,
R. Anderson, R. Mackey, and T. Estlin, “Productivity
Challenges for Mars Rover Operations: A Case Study
of Mars Science Laboratory Operations,” Tech. Rep. D-
97908, 2016.

D. Chattopadhyay, A. Mishkin, A. Allbaugh, N. Cox,
G. Tan-Wang, and G. Pyrzak, “The Mars Science Labo-
ratory Supratactical Process,” Pasadena CA, 2014.

S. C. Johnson, “Lint, a C Program Checker,” 1978.

R. Deen, D. A. Alexander, and J. Maki, “Mars Image
Products: Science Goes Operational,” May 2004.

D. Alexander, P. Zamani, R. Deen, P. Andres, and
H. Mortensen, “Automated generation of image prod-
ucts for Mars Exploration Rover mission tactical opera-
tions,” vol. 1, 2005, pp. 923 — 929 Vol. 1.

J. Wright, A. Trebi-ollennu, F. Hartman, B. Cooper,
S. Maxwell, J. Yen, and J. Morrison, “Terrain Modelling

for In-situ Activity Planning and Rehearsal for the Mars
Exploration Rovers,” in Conference Proceedings - IEEE
International Conference on Systems, Man and Cyber-
netics, vol. 2, 2005, pp. 1372 — 1377.

F. J. Morring, “Sky Crane. Aviation Week & Space
Technology,” Aviation Week & Space Technology, pp.
38-44, Aug. 2011.

G. Reeves and J. Snyder, “An overview of the Mars
Exploration Rovers flight software,” The Big Island and
Hawaii, 2005.

K. P. Gostelow, “The Mars Science Laboratory
Entry, Descent, and Landing Flight Software,” Kauai,
HI, United States, Feb. 2013. [Online]. Available:
https://ntrs.nasa.gov/search.jsp?R=20150007480

D. Harel, “Statecharts: A visual formalism for complex
systems,” Journal Science of Computer Programming,
vol. 8, no. 3, pp. 231-274, Jun. 1987.

M. Maimone, Y. Cheng, and L. Matthies, “Two Years
of Visual Odometry on the Mars Exploration Rovers,”
Journal of Field Robotics, vol. 24, no. 3, pp. 169-186,
Feb. 2007.

V. Verma and S. Kuhn, “Refactoring the Curiosity
Rovers Sample Handling Architecture on Mars.” in In
Proceedings of the IEEE Aerospace Conference, Big
Sky, Montana, USA, Mar. 2019.

[17]

[18]

[19]

[20]

[21]

[22]

BIOGRAPHY

Vandi Verma is the Operable Robotics

Group Supervisor in the Mobility and
Robotic Systems Section at NASA JPL.
She designed and developed SSim for
MSL. She had additional roles on
MSL for the design and development
of AEGIS autonomous targeting Flight
. Software, MSL Sample Processing Sys-
tems engineering, Flight Software Inte-
grated Testing, Systems Integrated Test-
ing, and Motor Control Testing. Since 2008 she has been
driving Mars rovers (MER, MSL) and operating the robotic
arm and sampling system. She is currently working on
Sample Caching Algorithms and Flight Software for the Mars
2020 mission. She has worked on a number of research
robotics projects and deployed autonomous robots in the
Arctic, Antarctica and Atacama. She has a Ph.D. in Robotics
from Carnegie Mellon University. Her thesis was on particle
filters for robot fault detection and identification.

Chris Leger Chris Leger was the Sur-
face FSW Development Lead for the
Mars Science Laboratory Mission, and
a developer for the robotic arm and
motor control interface flight software,
and SSim. He previously worked as a
rover driver and flight software devel-
oper for the Mars Exploration Rover
(MER) mission, and as a mobility and
motor control flight system engineer for
the Mars Science Laboratory mission. On MER, he wrote
flight software for the Descent Image Motion Estimation
System (DIMES), manipulator collision detection, and radar
and pyrotechnic device interfaces. He also designed rover
mechanical hardware, developed machine vision algorithms
for the MER ground data system, and worked on manipulator

11

simulation for the MER Rover Sequencing and Visualization
Program (RSVP). Dr. Leger received a BS in Computer
Engineering and MS and PhD degrees in Robotics from
Carnegie Mellon University. He currently works at Google,
Mountain View, CA.

