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erosol impacts on human health

Figure 1. Global ranking of risk factors by total number of deaths from all
causes for all ages and both sexes in 2016.
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Aerosol impacts on human health
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Motlvatlon for MAIA

Although PM is known to cause many health problems, the relative toxicity of
specific PM types is not well understood.

 PM type: fractional proportion of coarse particles (diameters between 2.5 and

10 um), fine particles (diameters < 2.5 um), and physical and chemical
components of PM, 5 in the aerosols we breathe.
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In situ monitoring and remote sensing

In situ Remote sensing

* measure mass and composition * retrieve mass or composition indirectly using

« high accuracy at point locations microphysical and optical indicators of particle type
« sparsely distributed e dense, uniform spatial sampling over large areas
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In situ monitoring is relatively sparse

MAIA surface monitors
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MAIA satellite instrument

MAIA contains a UV-VNIR-SWIR spectropolarimetric
camera mounted on a 2-axis gimbal to characterize
aerosol physical components

o  Along-track gimbal enables target observations
at multiple view angles (typically 5-9)

o  Baseline orbit: 10:30 a.m. equator-crossing time,
ascending node, sun-synchronous
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MAIA investigation is target based
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MAIA data products
Data level

Downlinked instrument telemetry

Calibrated and georectified radiance and linear polarization imagery
(250 — 500 m spatial resolution)

View and solar geometry, latitude, longitude

Cloud-screened total and fractional aerosol particle properties at time of
satellite overpass (1 km spatial resolution)

24-hr averaged concentrations of PM;o, PMs 5, and speciated PM, 5 on days
and locations coincident instrument observations (1 km spatial resolution)

Spatially and temporally gap-filled 24-hr averaged concentrations of daily PMy,
PM, s, and speciated PM, 5 (1 km spatial resolution)
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Satellite aerosol retrievals

4.4 km Resolution MISR AOD vs. AERONET
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Simple AOD-PM regressions are insufficient

Scatterplot of MISR AOD vs. PM, 5 from the EPA Air
Quality System (AQS) in Greater Los Angeles

o Alinear regression between
MISR AOD (small + medium
particles) and PM, s for the
Greater Los Angeles area
(solid) has a coefficient of
determination (R?) of only
0.17
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Simple AOD-PM regressions are insufficient

o  Examination of the temporal statistics for 4 years of AERONET AOD data and surface
PM, 5 data for Fresno, CA shows very different temporal behavior between AOD and
PM, 5 with longer correlation times for PM, 5 and stronger seasonality

Fresno AOD Temporal Autocorrelation (2012-2016) Fresno PM2.5 Temporal Autocorrelation (2012-2016)
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Geostatistical multivariate models are effective

Scatterplot of Predicted PM, 5 vs. PM, 5 from the . . -
EPA Air Quality System (AQS) in Greater LA o Including relative humidity and

60- : . wind speed produces a

Zii prediction model for MISR AOD
(small + medium particles) with
R? = 0.67 [Franklin et al., 2017]

o Adifferent study [Meng et al.,
2018] demonstrated that MISR
4.4 km-resolution AOD retrievals
could be used with other
variables to predict PM, 5 types
in Southern California
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Geostatistical regression models

« AOD is a column-integrated quantity (dimensionless)

« PMis a near-surface measure of mass concentration (ug m-3)

PM2.5, 10, or speciated 2.5 o (Space, time)

The GRMs are trained using T B (space, time) x satellite AOD

surface monitor data and + : :
then applied to the rest of the v X geospatial terms (elevation, roadway

satellite observations. density, land use, population)

A similar GRM is used to + § x spatiotemporal terms (RH, PBLH,
bias-correct the CTM PM temperature, winds, other satellite aerosol
predictions, which are used parameters, altitude scaling from CTM)
for gap filling.

+ Uncertainties
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Geostatistical regression model results

Nitrate
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o Sulfate (R? = 0.66), nitrate (R? = 0.62), organic carbon (R? = 0.55),
elemental carbon (R? = 0.58) [Meng et al., 2018]
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How the PM mapping process works

Satellite data are
used to map

column-integrated
aerosol properties

. T

0.00 0.05 0.10 0.15 0.20 0.25

MISR aerosol optical depth (AOD) map of California
5 February 2016
4.4 km spatial resolution
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How the PM mapping process works

Collocated satellite and surface monitor data are used to

generate empirical regression models relating AOD to PM

Regression parameters:
« AOD

e air temperature

* wind speed

« surface elevation

* length of major roads
« forest cover

10 20 30 430
Image credit: L. Tsutsui, KVPR Observed PM, ; (ug m)
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How the PM mapping process works

Once the regression models are “trained”, they are applied to
the satellite AOD data to create PM maps
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What about chemical transport models?

WRF-Chem Output of Daily PM, 5 Dry Mass
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What about chemical transport models?
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What about chemical transport models?

Site 24-Hour R2 18 Hour R2

LA-North
Glendora
Long Beach
Reseda

Santa Clarita

South Long Beach

Anaheim
Rubidoux
Ontario

Upland
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What about chemical transport models?

Glendora

106 1 2 3 4 5 6 7 8 9 101112 13 14 1516 17 18 19 20 21 22
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What about chemical transport models?

Squth Long Beach

1061 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22
-5
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MAIA data sources
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MAIA instrument Chemical transport model Health records

o Calibrated, georectified (CTM) — WRF-Chem Used to calibrate the PM o  Obtained from Vital Statistics,
image data for retrieval of o Informs column aerosol-to- predictor relationships. hospitals, HMOs, administrative
COlumn-integrated surface PM regressions_ MAIA will use eXiSting PM records, cohorts.
aerosol properties. Assists spatial/temporal gap- networks and deploy additional o  Used to associate PM exposure
Parameters include filling. speciation monitors in with health effects.
aerosol optical depth Constrains aerosol vertical pollabpration withllocal
(AOD), fractional AOD, distributions. mvestlgators, enwronmentgl
particle size. agencies, and US Embassies.
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Surface monitoring

Surface monitors are necessary to generate the geostatistical
regression models coefficients

For total PM, 5, PM1,

We will use existing monitors where available, and aim to use data from at
least 10 monitors of each type in each PTA (Ethiopia focus is PM, 5, but
requirement on number of monitors is not currently met)

Considering deployment of low-cost sensors as fallback
For speciated PM, 5

US/Canada: CSN, IMPROVE

Overseas:

o Primarily will make use of the Surface PARTiculate mAtter Network (SPARTAN)

o This will be supplemented with other existing monitors and stations to be deployed
by the MAIA Project (e.g., a SPARTAN filter station at the US Embassy in Addis
Ababa)

o Seeking partnerships where possible to share resources

o Also investigating deployment of aethalometers for black carbon
01/07/2019 AMS Annual Meeting 2019 26 jpl.nasa.gov



Summary

The MAIA investigation strategy integrates MAIA instrument observations, PM surface
monitor data, and WRF-Chem outputs to map size and compositional components of
ambient PM.

The MAIA instrument is currently in the detailed design and fabrication phase at JPL.

o The instrument will be hosted on the General Atomics Orbital Test Bed (OTB)-2
satellite

o Baseline orbit is 740 km altitude, sun-synchronous, 10:30 am equator-crossing time

o Launch is currently planned for 2022 (to be confirmed) for 3-year baseline mission

Epidemiologists on the MAIA team will conduct health impact investigations in the
Primary Target Areas.

MAIA data products will be publicly available, free of charge, for other researchers to
use.
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