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Introduction

Why do we want to constrain South Atlantic sea-level rise?

• In current reconstructions, only very limited number of observations
• Only one long record (Buenos Aires) routinely included
• Large source of uncertainty
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Which region?

• Regions have common
variability signal

• South Atlantic region covers
22 percent of global ocean

2



Low number of observations in South Atlantic
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Two approaches

Do we expect a difference between SA
and global?
• Do GIA, fingerprints, steric
observations, or climate models
point at a substantial difference
between South Altantic and the
global ocean?

Can we find extra observations?
• Do we have new tide-gauge records
or paleo proxies that could help us
out?
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Glacial Isostatic Adjustment
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Large GIA model ensemble from Caron et
al (2018)

• GIA in South Atlantic generally small
• Uncertainty is limited
• Individual stations on location with
larger signal: possible sampling bias
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Present-day mass redistribution

Glaciers
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All fingerprints (except EAIS)
show above-average sea-level
rise in the South Atlantic
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Present-day mass redistribution

Mean
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Estimates of 20th-century mass
redistribution from Adhikari et al (2019)

• Difference of 0.15 mm/yr between
SA and global

• Uncertain contributions over this
era

7



Steric sea-level changes

EN4
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• All products show
above-average steric trends
in basin

• Representative for the 20th
century?

• Role of salinity and sparse
observations
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CMIP5 models
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• South Atlantic versus global
mean (From Meyssignac et
al, 2018)

• Both dynamic and total sea
level show above-average
South Atlantic MSL rise

• Difference remains small
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Processes: conclusions

Processes cause an above-average SA sea-level rise Back-of-the-envelope:

• GIA: -0.04 mm/yr
• Present-day mass: +0.15 mm/yr
• Steric: about +0.2 mm/yr

We could expect a SA sea-level trend of about 0.3 mm/yr above global-mean

CMIP5 models also point at above-average contribution
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Increasing the number of observation
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New observations: Dakar
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Data rescue by Guy and Marta
• Longest record from Africa
• Trend of 1.4 mm/yr over
1900-2016
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New observations: Falklands
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Salt-marsh reconstruction by
PhD student of Roland

• Trend of 1.8 mm/yr over
1900-2010
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New observations: Mar del Plata
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Combination of nearby PSMSL
records

• Some parts are not RLR but
don’t look suspect

• Trend of 1.0 mm/yr over
1900-2016
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Merging the the observation into a basin estimate

We now have individual observations: how to get best basin-estimate?

• Correct for residual VLM (previous presentation)
• Correct for GIA bias
• correct for Present-day mass bias
• Combine using virtual station method
• Monte-Carlo simulation to propagate uncertainties
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Merging: Individual stations
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Merging: Basin estimate
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All corrections lead to higher basin
estimate:

• Each correction: about 0.2 mm/yr
• Best estimate: 2 mm/yr
• Large spread
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Summary

• High SA trend expected from processes (about 0.3 mm/yr above GMSL) and
CMIP5

• Some new observations (Falklands, Dakar, Mar del Plata)
• Best estimate larger than GMSL + expected bias
• Uncertainties still large
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