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Vertical land motion at tide-gauge locations

Vertical land motion at tide-gauge locations has
seen a lot of interest:

• Improve global and regional sea-level
reconstructions

• Isolate geophysical signals
• Study local subsidence
• Validate altimetry observations

IJmuiden tide gauge with GNSS receiver
and InSAR reflector

(Source: gnss1.tudelft.nl)
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Some open issues

• Are the linear trends in GNSS time
series representative for the TG
record?

• GIA, sediment loading, compaction?
Probably yes

• Deformation from surface loading?
Let’s find out!

• Geocentric sea-level change does
not conserve ocean volume
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Mass redistribution from GRACE

• Mass redistribution causes elastic deformation
• Deformation can be computed from solving sea-level equation

Equivalent Water Height
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mm/yr

GRACE RL06 JPL Mascon, 2002.4-2017.6

:

Solid−earth deformation
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The role of Glacial Isostatic Adjustment

• GIA affects GRACE observations and causes solid-earth deformation
• GIA has a considerable uncertainty

Equivalent Water Height
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Source: Caron et al., 2018

Solid−earth deformation
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Caron et al (2018): large ensemble of GIA models

• Quantifies GIA uncertainty by perturbing reology and ice history
• 167.000 GIA realizations with associated uncertainties

Mean

−9 −6 −3 0 3 6 9
mm/yr

Source: Caron et al., 2018

Standard error

0.0 0.3 0.6 0.9 1.2 1.5 1.8
mm/yr
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Caron et al (2018): large ensemble of GIA models

• Quantifies GIA uncertainty by perturbing reology and ice history
• 167.000 GIA realizations with associated uncertainties

Mean

−4.5 −3.0 −1.5 0.0 1.5 3.0 4.5
mm/yr

Source: Caron et al., 2018

Standard error

0.0 0.2 0.4 0.6 0.8 1.0
mm/yr
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Compute probabilistic estimates of present-day mass changes

Consider two major sources of uncertainty in GRACE observations

• GIA uncertainty
• Measurement uncertainty
• We neglect some other sources (geocenter etc)

Generate large ensemble of perturbed GRACE solutions
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Barystatic contribution

• GIA correction causes large uncertainty in land-mass changes
• Interannual variability in Terrestrial Water Storage

−10000

−7500

−5000

−2500

0

2500

5000

L
a
n
d
 m

a
s
s
 c

h
a
n
g
e
 (

G
t)

2004 2007 2010 2013 2016

Land−mass change

Greenland Ice Sheet

Antarctic Ice Sheet

Glaciers and Ice Caps

Terrestrial Water Storage

Total land mass change
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

B
a
ry

s
ta

ti
c
 t
re

n
d
 (

m
m

/y
r)

Sea−level change

8



A large ensemble of fingerprints

Because GRACE estimates are uncertain, the resulting sea-level and deformation
fingerprints are uncertain as well

• For each perturbed GRACE solution, solve sea-level equation
• This procedure gives a set of:

• 5000 GIA model solutions
• 5000 GRACE mass redistribution solutions
• 5000 Sea-level and deformation fingerprints

• We can use this for Monte-Carlo estimates
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Due to this variability, trends depend on time span

2002.3−2009.8

−2 −1 0 1 2
mm/yr

2009.9−2017.4

−2 −1 0 1 2
mm/yr

• Differences in near-field and far-field deformation
• Typical GNSS record length used to correct tide gauge is about 5-10 years
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How to remove the elastic deformation from GNSS trends?

• Separate known and unknown contributors in the
observed time series:

zobs(t) = RGIA(t) + RPresent-day(t) + zresidual(t)

• Trends computed from MIDAS algorithm (Blewitt et
al., 2016)

• Repeat these computations for each ensemble
member to obtain robust uncertainty estimates
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Modelled trends at GNSS station locations

Glacial Isostatic Adjustment

−3 −2 −1 0 1 2 3
mm/yr

Present−day mass

−3 −2 −1 0 1 2 3
mm/yr

• Elastic deformation causes substantial trends: not only in cryosphere, but
also due to TWS and far-field effects
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Observed and residual trends

Original trends

−3 −2 −1 0 1 2 3
mm/yr

Residual trends

−3 −2 −1 0 1 2 3
mm/yr

• Observed trends in South America and Australia coincide with modelled
deformation
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What is the impact of this correction on tide-gauge records?

• Sea-level trends from long tide-gauge records disagree with reconstructions
• Full model: correct tide gauges for GIA and residual VLM trend
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• Full model lowers disagreement with reconstructions and decreases spread
between stations

14



Conclusions

• We computed elastic deformation resulting from GRACE mass changes
• A large ensemble of GIA predictions has been used to derive robust
uncertainties

• Both GIA and elastic deformation have substantial impact on observed VLM
trends

• Variability in elastic deformation leaks into trend estimates in shorter records
• Vertical land motion and deformation explains some discrepancies between
tide-gauge records and reconstructions
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