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Background Material
• This talk assumes you were here for the previous 

companion talks in this session and/or read their 
papers. This work is important input to this talk and 
there is not enough time to thoroughly review it.

– Lock, et al, “Potential Campaign Architectures and Mission Design Challenges for Near-
Term International Mars Sample Return Mission Concepts”  discusses the motivation, 
previous work, and current study efforts surrounding Mars Sample Return. This includes an 
architectural description of the current missions under study, their major roles, foreseen 
implementation, and future trades being considered

– Woolley, et al, “Low-Thrust Trajectory Bacon Plots for Mars Mission Design,”   describes 
low-thrust analogs to pork chop plots for Mars missions including the MSR campaign 
architecture studies. These bacon plots underlie the end-to-end mission analysis for all of 
the architectures in the current MSR studies.

– Laipert, et al, “Hybrid Chemical-Electric Trajectories for a Mars Sample Return Orbiter,”  
defines methods for developing trajectories for Mars sample return orbiters using both 
solar electric propulsion and high impulse chemical propulsion systems.
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Problem Statement
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Which Trajectory To Choose?
(A Simplified Example)
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• Delivered mass of EP trajectories tends to 
have asymptotic performance with respect 
to power due to thruster saturation

• A mission designer runs a few trajectories 
in MALTO and gets the following results:

• Which one is best?  
– Case 4 delivers the most mass
– Case 3 might be a knee in the curve
– Case 1 needs the least power

• It depends on the spacecraft!

Traj Power [kW] Xenon [kg] Delivered [kg]
1 15 600 1700
2 30 800 2000
3 45 1200 2300
4 60 1400 2400

Power
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Which Trajectory To Choose?
(A Simplified Example)
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• Let’s examine a simplified example where only two 
parameters are varied and relationships are simple:

• Conclusions:
• different spacecraft prefer different trajectories
• the useful payload varies significantly with spacecraft design 

parameters (factor of ~7 in this example), so it matters a lot
• Wouldn’t it be great if there was a way to optimize this?

A B C D Spacecraft ID
65 150 90 150 Power Density [W/kg]

12% 12% 6% 6% Tank Fraction [%]

Traj Power [kW] Xenon [kg] Delivered [kg] Useful P/L A B C D
1 15 600 1700 Traj 1 55 185 160 225
2 30 800 2000 Traj 2 10 275 190 325
3 45 1200 2300 Traj 3 -120 275 150 350
4 60 1400 2400 Traj 4 -345 175 5 270

Best 1 2 or 3 2 3

Rest of Bus [kg] 1000
Thruster Throughput [kg] 250
Thruster Mass [kg] 50
Structures Fraction 10%
Propellant Margin 10%

(same for all designs)

Extra performance of Traj 4 
outweighed by system impacts, is not 
the correct choice for any option
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Mars ORbiter Tool (MORT)
Simultaneous Spacecraft/Trajectory Optimization
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A single run takes < 1 sec, so it is suitable 
for optimization and parameter sweeps
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Trajectory Modeling – MSR
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Subsystem Models
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• Modular – any block is replaceable
• Variable Detail across subsystems
• Upgradeable as fidelity improves
• Example: Thermal Subsystem

Thermal Mass = x0% of S/C Dry Mass

MLI = x1 * Bus Surface Area [m2]
Heat Pipes = x2 * (PPU Waste Heat + Bus Waste Heat) [kW]
Misc (heaters, thermostats, etc) = x3 * Characteristic Length [m]

Generic Rule of Thumb

Analogue to Prev Mission

Expert Low-Fi Modeling Refine x1, x2, x3 and scaling relationships

Detailed Models Incorporate model directly or input the detailed hardware items
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Typical Result
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Trends with Propulsion
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Trends with Launch Vehicle
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MORT also works for CP!
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Conclusions
• MORT is an extremely powerful tool in the formulation of SEP 

missions, enabling quantitative trade studies otherwise 
impractical that are fundamental to improving performance

• This talk cannot capture the full utility of MORT. In the past 
few years, it has been used for:
– Concepts: Remote Science, Telecom, Daughtercraft/Multifunction, 

Sample Return, Crew/Crew Cargo

– Size Class: SmallSat ( up to 100kg), Robotic (up to 10,000 of kg), 
Crewed (up to 100,000 kg)

– Mission Modes: Direct Launch, Rideshare, Refueling/Refurbish
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