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Overview

• Requirements for an advanced thermal control system

• The separated flow architecture

• Model description

• Working fluid trade study results

• Conclusion
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TCS Requirements and loop architecture

Thermal system requirements:
1. Develop a ~0.5 m2 planar heat acquisition zone (evaporator)
that can:

a. Accommodate up to 1000 W
b. Accommodate heat fluxes up to 5 W/cm2

c. Accommodate distributed, discrete heat loads
d. Stay Isothermal (3°C across entire evaporator)
e. Have temporal stability < 0.05 °C /min

2. Use less than 5 W of control power
3. Accommodate multiple evaporators and condensers
4. Provide at least a 15 year lifetime

Solution: develop a novel mechanically pumped two-phase fluid
loop.
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Basic Analysis I
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Basic Analysis II

5

Use constraints and
equations to constrain
range of allowable heat
loads:
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The Fluid Model

• Qmax-Qmin
• Pump mass flow rate
• Saturation temperature
• NPSHR
• System lines length 
• Lines diameter range
• Wick pores diameter
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• NPSH requirement
• Vapor line diameter to 

satisfy Qmax
• Liquid line diameter to 

satisfy Qmin
• Calculating tube, 

accumulator, 
evaporator, radiator 
mass

• Calculating fluid mass

• Qmax-Qmin Values
• System mass breakdown
• Mass flow rate
• System pressure
• Characteristic temperatures

Inputs                                Process                           Outputs



Qmax and Qmin model results
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Characteristic temperatures comparison
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Mass flow rate
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System pressure
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System mass breakdown
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Hazards – Material compatibility – Heritage 

Fluid Health Flammability Reactivity Aluminum 
compatability

Titanium 
compatability

316 SS 
compatability Applications

ammonia 3 1 0 EXCELLENT GOOD EXCELLENT Heat pipes
butane 1 4 0 EXCELLENT EXCELLENT EXCELLENT Heat pipes

1-butene 1 4 0 EXCELLENT ? EXCELLENT ?
Hydrogen 

Sulfide 4 4 0 POOR GOOD POOR ?

Dimethyl 
ether 1 4 1 POOR ? POOR ?

Isobutane 1 4 0 EXCELLENT ? EXCELLENT ?
Isobutene 1 4 0 EXCELLENT ? EXCELLENT ?

Isopentane 1 4 0 EXCELLENT ? EXCELLENT Heat pumps
pentane 1 4 0 EXCELLENT ? GOOD Heat pipes
propane 2 4 0 EXCELLENT EXCELLENT EXCELLENT Heat pipes

propylene 1 4 1 EXCELLENT ? EXCELLENT Heat pipes
r152 2 4 0 POOR ? ? ?
r161 2 4 0 ? ? ? ?
r32 1 4 1 POOR ? EXCELLENT ?
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Conclusion
• The final choice for the MPFL working fluid is ammonia.
• An ammonia testbed is ready to start testing at JPL.
• One of the objectives of the testing will be to observe operation windows

and stability at constant pump speed

48th International Conference on Environmental Systems 
July 2018, Albuquerque, NM 13



Acknowledgements

48th International Conference on Environmental Systems 
July 2018, Albuquerque, NM 14

Acknowledgments
This research was carried out at the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National Aeronautics and Space Administration. The
authors would like to thank Gajanana Birur for his technical advice and guidance. The authors
gratefully acknowledge the support from the JPL Research and Technology Development
office that provided the funding for this work.

© 2017 California Institute of Technology. Government sponsorship acknowledged.



BACK UP
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Are we better than a loop heat pipe?

Advantages compared to loop heat pipes:

• Integration and test, fittings, geometry flexibility
• Wick only has to pump the liquid for a small portion of the loop. 

We do not rely solely on the wick to pump the fluid.
• Changing the pump speed allows to change the Qmax-Qmin

window and to accommodate higher heat loads
• Flat geometry with wide plate
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System Architectures
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• Radiator running at higher T (more efficient)
• Less pressure drops, smaller pump
• Fall back mode in case of pump failure

• Smaller Delta Q self regulation window
• Limited radiator distance, relies on pumping

action of the wick

• Longer radiator distance, pump takes care of
pressure drops

• Big Delta Q self regulation window
• Potentially does not need pump speed

control

• Higher pressure drops
• Radiator has to run at a lower average

temperature and get rid of more sensible
heat. Less efficient

• No need for wick structure to manage
phases

• Higher pressure drops, more pump power
• Need of preheater or recuperator to be able

to achieve isothermality in evaporator

Separated Flow 1 Separated Flow 2 Mixed Flow



Saturation T on the steeper part of the curve
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Subcooling effect:
Example 1:
Tsat: 40C, 10C subcooling à 4 bar

Example 2: 
Tsat: 10C, 10C subcoolingà 2 bar



Inputs Influence
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Inputs Influence
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Inputs Influence
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Inputs Influence
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