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Alas, Knowledge is a Pain

B i ety " -t

| thought, | knew EVERYTHING,
That was Last Night!

But, as | woke up this Morning,

| am more Confused and Lost!

-Murthy S. Gudipati (May 29, 2018)
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, Comets & Asteroids, and Origin of Life

-

Mammals
Plants Humans

Earth's
Biogeologic
Origin of ClOCk

Earth Origin of Crust
Y and Core

Late Heavy

Bombardment

(LHB)

Lunar Cataclysm
Bacteria

Shelly
Invertebrates

Eukaryotes
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Though my interest in
Comets is due to “Potential
Prebiotic Molecular
Delivery” by Comets to

Earth triggering possible
"Origin of Life”, | would
NOT talk about thls today.

The Road is long and the

Journey has just began

to understand the Origin
of Life on Earth!
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The Dots...

-

Molecular Clouds
Protoplanetary Stage

Kuiper Belt Objects

Centaurs
Short period Comets

Some Comets Die Young!
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| 50 Mivllion Year_s gf Radiation

-

Dense Molecular Clouds — Formation & Lifetime ~50 Myr (10K)
Protoplanetary Pebbles & Cometesimals — ~50 Myr (10 — 130 K)??

KBO Precursors — Scattered out by Saturn & Jupiter (Warmer?)
- Formed where they are now? (~30 K)

Rest of 4600 Myr — Hibernation in KBO Region? (~30 K)
Centaur — A few Myrs (~50 K- 100 K)

Short Period Comets — A few Hundred Years?? (120 K — 350 K)

Without Tracers that are “preserved’,

The Story is only half-complete!
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"'planetary Disk is not a Washlng Machine

uncoflimated
collimated wide-angle wind

bipolar
outflow /

in-falling
gas and dust
CAls and

chondrules

annealcd

silicate dust f l
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distance from protosun (astronomical units, logarithmic scale)

(from Nuth, J. A_, 2001, Amencan Scienfist, v. 89, p 230.)
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I\’Ilolecular Clouds towards embedded
~Stars gnd Protostars

THE ASTROPHYSICAL JOURNAL, 740:109 (16pp), 2011 October 20
Boogert et al.
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Oort Cloud Comets — Similar Composition?
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Similar Composition:

met(s) and Interstg]lar-Ice Grains

Comet Composition (Hale-Bopp)
Crovisier and Bockelee-Morvan 100
Space Science Reviews 90: 19-32, 1999
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Tracer No. 1 — Amorphous Ice

Ry ‘.
* Interstellar ice grains contain amorphous water ice

 We do not know what a comets interior ice phase is:
Amorphous or Crystalline?

« We need to “Dig Deep” to resolve this Key Question.
Not, just “Scratch the Surface”.

« Cliff-Collapses: We should have seen spectra
signatures with VIRTIS, are we prepared for the next
Comet Mission to analyze freshly exposed ice from
the interior?
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flacroscopic Amorphous Ices in the Lab:
ipulating lnjerstellags; Comet lcgg

150 K Deposition 95 K Deposition
(Crystalline) (Amorphous)
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morphous to Crystalline — Exothermicity

3 Impurltles may change exothermic to endothermic (amorphous *
to crystalline) transition — to be confirmed in the laboratory

. .. Kochl & Sirono GRL 28(2001)827
Amorphous Ice Relatlve Exotherm|C|ty

Deposition 5 K
one day

a pure H0
1.00 + oneday T ] \ ’
two days L : —
three days 0 50 100 150 200
J /\ —7 + Temperature (K)

Endo. Exo.

:‘g Amorph o \/C § b H0:C0=100:10
g 0% S Al
O w
Ll>j 4 - \ + 0 5 1(l)0 15|0 200
o Temperature (K)
£ i L g| ¢ H0:C0,=100:10
o 098 | . w
(14 i " §_=_W—
1 Sublimation | S I . L
100 110 120 130 140 150 Endotherm ’ ¥ rompente k) 200
0.97 . ——— — — —— : g d HX:CO:CO5CHe=100:10:5:5
60 80 100 120 140 160 180 200 220 '" P
Temperature K u'g, V \[

50 100 150 200
Temperature (K)

<

Robert Wagner and Murthy Gudipti (2013)

to be published

Figure 2. DTA curves of pure (a) and impure (b-d) a-H20.
Endo., endothermic; Exo., exothermic.
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Amorphous Ice in Comets

B b ity -

Unless we "Dig Deep” into a Comet
And Determine Whether OR NOT It's

Interior is made of Amorphous Ice,

We haven't fully connected the

DOTs...

VAmorphous H,O Ice Excellent Tracer

© 2018 California Institute of Technology. Government sponsorship acknowledged.
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H30 Ice & Strongly Bound Impurltles

-.)'. 4. - "

NH3 and H,O, are Strongly Bound with H,O
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Ice Composition VUV Studies

H202 in H20 Ice
« ==« H20 ice 100 K

E o —— 30% H202 in H20 10 min

. 156~ ' L
o] Strong| 30% 14202 I 1420 70 min
< 1.24 Water Ice (20 - 60 nm films) | ]
5 ) —— Amorphous 21 K 1
B 047 —— Crystalline 150 K g B d d
% 1 —— Crystalline Warren(1984) O n e = | )
= 0.3 1 e
s ] ]
é 0.2 4 Imaginaray Index of Refraction (k) -
= 0.1 '- n 054 »

0.0 1 ’
L e I I e L I L et
012 013 014 015 016 017 018 019 0.20 0.0 wpo - - v T = - Y
120 140 160 180 200 220 240

Wavelength (ium) >
L Wavelength (nm)

¥ 2 = ic Fraoptaos | 30%H202 in H20 Ice
- H20+10% NH3 110K

NHs | NHs binds
- H20O — No

gly with
od Tracer

Absorbance

= H202is P

125 150 g = 200 225 250

Wavelength (nm) HZO nOt

oduct of
d Tracer

© 2018 California Institute of Technology. Government sponsorship acknowledged. 15




>

BT ema
Crystalline H,0O Ice <160 K; Amorphous H,O Ice <<80 K
CO, Ice <70 K; Super Volatiles ~30 K
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' Trappmg of Volatlles in CO; Ice

COs is up to 20% of H-0O

Can form Separate CO-> Ice Domains
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Where are the Volatiles Trapped?
= HQ;lce or CO.-Ice

‘1 Altweqgg et al.,

Relative abundances of comet gas after outburst on
29 July compared with measurements taken on 27 July

(H, NH, HO CH, HIN (€O CH, C(HOH HS (0, OCS SO, (S

L 3 2 e e 2 6 2 2

During an outburst of gas and dust from Comet 67P/Churyumov-Gerasimenko on 29 July 2015, Rosetta’s
ROSINA instrument detected a change in the composition of gases compared with previous days.

The graph shows the relative abundances of various gases after the outburst, compared with measurements
two days earlier (water vapour is indicated by the black line).

Credits: ESA/Rosetta/ROSINA/UBern/ BIRA/LATMOS/LMM/IRAP/MPS/SwRI/TUB/UMich
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<<1% = Trapped (Depleted Super Volatiles)

1-5% = Trapped (with moderate binding with host)
Hzo/NH3 or H20/02

5 — 20 % = Segregation domains (H,O vs. CO,)

We conducted New Laboratory Studies to
Explore the H,O vs. CO, ices

© 2018 California Institute of Technology. Government sponsorship acknowledged. 19




COin CO; lce

>

-"

Temperature (K)
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

'iiiiii;;COCO(M);;; .
FLTT S S /ST c-impact

lonization of
—Hzo' CO, gives

—— CO |[EEsimmnmmnnmne e fen ey _
——Cco2 ] C 1OOA)CO

- A SIAL -

1E-11 <

1E-12 4

Period, (Voltage,)

1E-13

1E-14 ‘ i .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (s)
Murthy Gudipati & Benjamin Fleury — To be Published
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COin CO; lce

>

Temperature (K)
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

. COCO,(1:16)
0.5Kmin'

NIST e-impact
lonization of
CO, gives
~10%CO

~10% O

1E-10 -

Period, (Voltage,)

- ,‘.,' [‘1 A i -;'#}'UIMV' m»("flﬁ‘”

ALl | l |mldwmﬂ“IUHMJII“HMIMW# |

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (s)

Murthy Gudipati & Benjamin Fleury — To be Published

© 2018 California Institute of Technology. Government sponsorship acknowledged.

21




COin CO; lce
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COin CO; lce
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02 & COiInCO; lce
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02, CO & C02 In H20 |Ce
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02, CO & C02 In H20 |Ce
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Anti Correlation between H,O and CO,
: — - b TET - : R

N
'

"

Recondensation
due to Thermal
Inertia, making

CO, to outgas

differently from

G. Filacchione et al., Science (2016)
Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/CG

© 2017 California Institute of Technology. Government sponsorship acknowledged.

28




fhermal Gradients and Volatile Production

.’ N

/ Crystalline Ice \
>160 K i i

Trapped CO,. CO, O,, etc.
>140 K ’ G \

Excess ice)
ok £ 4} N\
Excess Supervolatiles (CO, O,, Ny, CH,, etc)
>40 K

<25 K Primordial Interstellar Ice
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Tracers from CO, Ice

\' il -.’

« CO, is the second most abundant molecule
(Interstellar & Cometary)

¢ |[fCO,is >>5%, it starts forming aggregates

¢ |[fCO5is >>10% it start forming pure ice domains

* Interstellar ice has CO, >>10%, hence
Pure CO, domains must exist in interstellar ice grains.

« CO, Amorphous = Crystalline ~40 K

Let’s see what is going on with CO, Ice
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¢ . Photochemistry of CO./H,0 Ice

. - .. _ A‘ -.

Soumya Radhakrishnan, Murthy S. Gudipati, et al. (ApJ in Review)
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CO; is a good Tracer

3 ) e "

If Protoplanetary Disk is a Washing Machine,
CO3 should be gone!

 We should look for CO3 in Cometary
Interior/Outgassing!

is a good TRACER Molecule
How about O;?7?
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67P/Churyumov—GeraS|menko is
Volatlle Poor

A

CO,, CO, and O, are expelled from A->C transition
~140 K before H,0 sublimes ~160 K
O, does not come out with H,O0?7??

How accurately do we know about

outgassing/surface temperature correlation?

On an average — does this matter?

O, — A potential Tracer or NOT?

Murthy Gudipati & Benjamin Fleury — To be Published
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Conclusions

ik 3
B | . i %)

Cometary Nucleus of 67P/CG is Depleted in Super Volatiles

Amorphous ice not heated above 120 K can trap volatiles and
supervolatiles in small quantities, in agreement with 67P/CG

observations.

Tracer Species that lead us all the way to DMCs of ISM:
1) Amorphous Ice

) CO;

) 057

) S,, D,O, "“N/°N, ?7

If 67P/CG is a Thermally Processed Nucleus(<120 K)

Cometary Interior Ice “MUST BE AMORPHOUS”
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