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LRI data analysis and calibrations outline

GRACE Follow-On Requirement Noise Levels
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The Laser Ranging Interferometer (LRI)

The LRI is a partnership between the US and Germany
US: Stabilized laser and Metrology
Germany: Optics/opto-electronics
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Calibration — scale factor between MWI and LRI

LRI and MWI are measuring the same

signal

Analyse the difference:
. 1 part in 10° over a day

Calibration between LRI and MWI

. 80 um/day drift > this is
plausible with laser frequency
change due to cavity temperature
change of 13 mK/day

Analysis ongoing

Good agreement between the
instruments
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LRI and KBR postfits first results
(with phase jumps)

Postfit residual <107 Postfit residuals 20180703
. After incorporating measurement
into gravity field estimation:
postfit residual = measurement —

gravity field estimation.
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M§\II: 78 nm/s RMS*
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At lower frequencies — still some
signal
. Both track identically

. see scale factor

N
<
X
I
T

Range rate residual [m/s/vHz]
5
1
T

1|=—KBR
= LRI with phase jumps
LRI without phase jumps E

—_

S
©
1

LRI provides better measurements e e
above 20 mHz Frequency [Hz]
*Data from Dah-Ning Yuan, JPL

-
o w
&



Phase jumps in inter-spacecraft science data

* Infrequent unexpected changes in phase

x10° J 2018-06-23 Phase

Al

« Don't yet understand the cause; but can arz e
remove them perfectly

 Science not affected!
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Investigation: Simultaneous high-
rate data during roll thruster fire M
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Thruster signal on both SC

o

Roll thruster on GF2

» First set of pulses is GF1 Roll thruster on GF1
transponder tracking GF2
response to GF2 master
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Phase jumps can be removed perfectly

 Phase jumps are a step impulse in phase
— We know the decimation filter response
— We don'’t know the amplitude and time

. Phase discontinuities can be removed by two
methods.

1. Find phase jump (aka glitch) in master phase
and remove time and amplitude best fit template
of it from master phase

2. Subtract master phase - transponder phase
(same processing as MWI)

 We have two independent methods of
removing phase jumps.

 Both work very well.
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Phase jumps can be removed perfectly

LRI ranging performance with and without phase jumps 20180703
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LRI Steering mirror measures
Line-of-Sight to distant spacecraft

« Science data system uses
spacecraft on-board sensors (IMU,
SCA) to remove tilt-to-length
coupling in data analysis.

» LRI fast steering mirror (FSM)
directly measures the change in line
of sight to the other spacecraft with
high precision and accuracy

 FSM pointing is updated at LRI data
rate (10Hz)

* LRI points to the other spacecraft
with < 1 prad resolution rms (over 10
seconds);

— at 200 km separation this
corresponds to less than <20 cm
error over 10 s



LRI improves pointing information | |

Differential wavefront
sensing and high-gain
control gives continuous
monitor of line of sight.

LRI steering mirrors
point to other spacecraft
with 2 prad/VHz

precision

LRI steering mirror is
~10x quieter than Star
Camera
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Preliminary evaluation of ground projections of

on-orbit performance m

Compare L3 LRI range displacement requirement with projected
performance

Projection of ground test measurement of 10? L L B L AL R L B
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Observed LRI performance agrees well with predicted performance



Summary and status

. GRACE Follow-On Laser Ranging Interferometer, the first inter-spacecraft laser interferometer, has successfully
returned science data when operating since first power-on in June 2018.

« Performance in orbit as measured matches expected values from ground testing
* Preliminary analysis indicates better than requirements

. LRI Steering mirror telemetry can be used to improve gravity solutions for both instruments

. Phase jumps due to thruster firing were unexpected, but can be perfectly removed: DO NOT impact Science
— Can be removed from each data stream individually, or subtracted after interpolation
— Cause is under investigation

* Incorporating LRI into L1A/B data stream ongoing
« L1B data will have phase jumps removed

«  Calibration is in progress
— Working on understanding scale factor variations from MWI, and sensititivity to scale factor error

*  October 2018:
— In-orbit commissioning is ongoing
— LRI have interesting data analysis to understand our system in flight
— Looking forward to getting back in science mode!
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