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Purpose of HabEx
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HabEx Presentations & Posters
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Title Presenter Date • Time

HabEx uUltraviolet spectrograph design and DRM Paul A. Scowen
10 June 2018 • 10:00 - 10:20 
AM

Solid state detectors for the Habitable Exoplanet imaging mission (HabEx) and the large UV/optical/infrared (LUVOIR) surveyor mission 
concepts

Shouleh Nikzad
10 June 2018 • 11:10 - 11:30 
AM

The habitable exoplanet imaging mission (HabEx) Bertrand Mennesson 11 June 2018 • 1:20 - 1:40 PM

Overview of the 4m baseline architecture concept of the habitable exoplanet imaging mission (HabEx) study Gary M. Kuan 11 June 2018 • 1:40 - 2:00 PM

The habitable exoplanet imaging mission (HabEx): science goals and projected capabilities Bernard Gaudi
11 June 2018 • 10:30 - 10:55 
AM

The HabEx workhorse camera Paul A. Scowen 11 June 2018 • 2:00 - 2:20 PM

Technology maturity for the habitable-zone exoplanet imaging mission (HabEx) concept Rhonda M. Morgan 11 June 2018 • 2:20 - 2:40 PM

HabEx Space telescope exoplanet instruments Stefan R. Martin 11 June 2018 • 2:40 - 3:00 PM

HabEx: high precision pointing architecture using micro-thrusters and fine steering mirror
Oscar S. Alvarez-
Salazar

11 June 2018 • 3:30 - 3:50 PM

Numerically optimized coronagraph designs for the habitable exoplanet imaging mission (HabEx) A J Eldorado Riggs 11 June 2018 • 3:50 - 4:10 PM

Overview and performance prediction of the baseline 4-meter telescope concept design for the habitable-zone exoplanet direct imaging 
mission

H. Philip Stahl 11 June 2018 • 4:10 - 4:30 PM

HabEx Lite: a starshade-only habitable exoplanet imager alternative David Redding 11 June 2018 • 4:30 - 4:50 PM

Terrestrial exoplanet coronagraph image quality: study of polarization aberrations in Habex and LUVOIR update
James Breckinridge, 
Russell A. Chipman

13 June 2018 • 10:30 - 10:50 
AM

Poster Title Presenter Date • Time
HabEx polarization ray trace and aberration analysis Jeffrey Davis 11 June 2018 • 5:30 - 7:00 PM

HabEx space telescope optical system overview Stefan R. Martin 11 June 2018 • 5:30 - 7:00 PM

HabEx telescope WFE stability specification derived from coronagraph starlight leakage Bijan Nemati 11 June 2018 • 5:30 - 7:00 PM

Mirror design study for a segmented HabEx system James T. Mooney 11 June 2018 • 5:30 - 7:00 PM

Overview and performance prediction fo the alternative 6.5-meter telescope concept design for the habitable-zone exoplanet direct 
imaging mission

H. Philip Stahl 11 June 2018 • 5:30 - 7:00 PM
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HabEx Architecture A Concept

• The HabEx STDT chose these parameters for Architecture A:
• Telescope with a 4m aperture

• 72-m diameter, formation flying external Starshade occulter

• Four instruments:
• Coronagraph Instrument for Exoplanet Imaging

• Starshade Instrument for Exoplanet Imaging

• UV– Near-IR Imaging Multi-object Slit Spectrograph for General Observatory Science

• High Resolution UV Spectrograph for General Observatory Science

6
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Design Philosophy

• The HabEx architecture must be:
• Executable:

• Within technical capability
• At reasonable cost

• Minimize technical risk:
• Likely Class A Mission
• Use existing technologies, or 
• Minimize need for developing technologies
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• Keep it simple
• Use mass and volume to reduce complexity

• Avoid problems from the start
• Don’t fight symptoms



Key Features:

• These features are “game changers” that enable this 
observatory concept:
• SLS Block 1B Launch Vehicle with 8.4m x 27.4m 

Fairing
• Characteristic:  Increased mass and volume launch capability 

over existing LVs

• Benefit: Allows the use of mass and volume to minimize 
complexity and therefore reduce risk and cost

• Microthrusters
• Characteristic : Extremely low mechanical disturbance noise

• Benefit : Significantly improves pointing stability, simplifies 
structural dynamics design, improves telescope wavefront
stability

• Vector Vortex Coronagraph (VVC)
• Characteristic : much less sensitive to low order wavefront

aberrations with high throughput

• Benefit : Reduces the need for an ultra stable telescope. 

• Starshade occulter
• Characteristic : allows for a small inner working angle (IWA) 

over a broad spectral band

• Benefit : Allows a 4m telescope to have an IWA equivalent to an 
8m telescope @ l=1mm
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Why the SLS?

• Keep it simple!

• Use mass and volume to minimize 
complexity: 
• Co-launch in a single fairing 

• Minimal deployments 
• Fewer mechanisms and control electronics.

• Use volume for a 4m unobscured, off-
axis telescope with Instruments on the 
side (not under the PM). 

• Use mass for a monolithic Zerodur® 
primary mirror.  

• CBE: 1295kg, 80Hz first mode

• very high thermal inertia for stability
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Key Specifications of Block 1B Cargo with 
8.4m PLF, Long Concept:
• 7.5m inner diameter fairing
• 25.83m total useable inner height
• ~36,000kg (minimum) to Sun-Earth L2

Less complexity = less risk & less cost

To Sun-Earth L2



Telescope Flight System
(Baseline)

• 4-meter diameter aperture

• Off-axis, Three-mirror anastigmat telescope 
(unobscured)

• Four Instruments:
• Coronagraph Imager/Spectrograph (CG)
• Starshade Imager/Spectrograph (SS)
• UV Spectrograph (UVS)
• Workhorse Camera Imager/Spectrograph (HWC)

• Fine Guidance Sensor (FGS)

• ACS Thrusters

• Microthrusters

• Solar Array/Sunshield

• Phased Array Antenna
• Ka-band data downlink
• S-band cross-communications with Starshade

10
From CL#18-2217
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Telescope Flight System: Exploded View
(Baseline)
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Instrument Bay

Solar Array / Sunshield 
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Fixed Scarf
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Secondary Mirror 
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Primary Mirror Assembly

Spacecraft Bus
w/ phased array 
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Solar Array
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Instruments
(Baseline)
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Why Vector Vortex Coronagraph?

• Purpose: 

• to maximize planet light throughput and contrast and 
minimize requirements on the telescope

• Benefit: 
• Much less sensitive to low order telescope WFE

• Rationale:

• Very good throughput and contrast: 
• on par (theoretically) with Hybrid-Lyot Coronagraphs (HLC) or 

other coronagraph types

• Forgiving: 
• rejects low order Zernike WFE terms in its null space.  

• ~500pm rms instead of ~10pm rms stability

• Demonstrated in the lab (though not to the level 
required for space) 

• Demonstrated on ground-based telescopes (Subaru, 
Palomar, VLT, Keck)

• Further development on-going in HCIT at JPL

13
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A charge 6 liquid crystal polymer 
vector vortex mask as seen through 
crossed polarizers.
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Ruane, et al.,  JATIS (28 March 2018).

VVC6 IWA = 2.4l/D = 62mas @ 500nm



• The coronagraph instrument drives telescope requirements:

Key Telescope 
Requirements
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Inner working angle (IWA) @ 500nm 62mas Aperture diameter 4m

Contrast ≤1x10-10 Primary mirror f/# f/2.5

Diffraction limit wavelength 400nm

Quasi-static WFE 30nm rms

Maximize throughput Primary mirror type monolith

Unobscured pupil off-axis TMA

Contrast stability ≤2x10-11 Pointing stability ≤2mas/axis

WFE stability <1nm rms / 50hrs

Telescope RequirementCoronagraph Requirement



Why Microthrusters?
• Purpose: 

• To maintain pointing during observations

• To offset solar pressure induced torque on the telescope.  

• Background:

• Solar pressure is 0.5µN/m2 at Sun-Earth L2. 

• HabEx has ~100m2 projected area, 

• Solar pressure is ~50µN, with ~3m offset of the center of pressure from the 
center of mass.

• Rationale: 

• Two flight proven microthrusters to choose from: cold gas and colloidal 
electrospray

• Colloidal electrospray thrusters (NASA ST7) have flown on ESA LISA Pathfinder 
and are planned for ESA’s LISA mission.

• Cold gas thrusters are currently flying on ESA Gaia.

• Colloidal Microthrusters (baselined) have sufficient thrust capability:

• 5-30µN for each thruster head on ST7

• thrust resolution ≦0.1µN

• Significantly less noise than reaction wheels  (≦0.03µN/rtHz over all 
frequencies)

• Potentially higher reliability than reaction wheels

• Simplifies structural dynamics design, analysis, and testing

• Potentially no payload/spacecraft isolation.
15Pre-Decisional - For Planning Purposes Only

Thruster noise PSD plot for 
colloidal microthrusters.  Max 
noise above 10-3 is likely due to 
thrust-balance sensor noise 
limits.

(ref: “Colloid Micro-Newton 
Thrusters For Precision Attitude 
Control”, John Ziemer, et. al, April 
2017, CL#17-2067)

Units: µN/rtHz

Waterfall plot derived from 
measured data showing Ithaco B-
wheel Fx data and the radial force 
model
(reference: “Conditioning, 
Reduction, and Disturbance 
Analysis of Large Order Integrated 
Models for Space-Based 
Telescopes”
By Scott Alan Uebelhart, MIT 
2001)

Units: N2/Hz



Why a Starshade?

• A starshade is designed for <1x10-10 contrast from the 
IWA+ over a wide spectral band.  

• For HabEx:
• Coronagraph @ 500nm, D=4m (Tel dia)

• IWA = 2.4l/D = 62mas

• 72m Starshade @ 124,000km

• IWA = 60mas over 300nm – 1000nm

• For Coronagraph IWA=62mas @1000nm would require D 
= 8m.

• The Starshade is slow to retarget, but is very good at 
deep spectral characterization at IWA with no OWA.

• The coronagraph is fast to retarget, but is only able to 
detect 500nm at IWA, and is limited by OWA

• These two exoplanet instruments are complimentary.

• Starshade technologies are being developed by the 
Exoplanet Exploration Program

• A Starshade is planned for a rendezvous with WFIRST

16

Vis:  300nm – 1000nm, 124,000km
UV:  200nm – 670nm,   182,000km
NIR: 540nm – 1800nm,   69,000km
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Starshade Flight System
(Baseline)

• 72-meter diameter (tip-to-tip)

• 40-meter diameter central disk

• 16-meter petals (x22)

• Solar Electric Propulsion (SEP) Hall Effect 
thrusters
• 2 flight + 1 spare, each side (6 total)

• Bi-prop hydrazine thrusters
• ACS 

• Orbit maintenance

• Communications
• X-band to ground, 1kbps, command & ranging

• S-band to telescope, 100bps, data transfer & 
ranging

17
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Starshade Flight System 
(Baseline) Exploded View

• 72m diameter Starshade deploys radially from Hub exterior

• PLUS (Petal Launch Restraint & Unfurler Subsystem) 
• deploys the Starshade occulter (jettisoned after use)

• Starshade Bus fits within the Starshade Hub

• Bus Includes:
• Solar Electric Propulsion (SEP) Hall effect thrusters
• 2 Flight / 1 Spare (on each end)
• Bi-prop chemical thrusters
• Communications, with ground & telescope
• Formation Flying beacon
• Electronics
• Solar Array (2 sets)

• 1 rigid array on end of hub

• 1 flexible CIGS array starshade disc when deployed

• Thermal Control

• Starshade is spin-stabilized at 0.33 RPM 
• allows starshade occulter temperature to be passively controlled

• Communications same as telescope (w/o extra 1Tb storage)

18
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Rigid solar arrayGimbaled 
SEP thrusters

Star-tracker

Bi-prop thrusters
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Summary

• HabEx takes advantage of existing (or developing) technologies to 
achieve compelling science:
• SLS Block 1B launch vehicle 

• Reduces complexity and technical risk (and cost)

• Vector Vortex Coronagraph Charge 6
• Relaxes telescope quality and stability requirements compared to other coronagraphs

• Microthrusters
• Significantly reduces mechanical noise

• Simplifies structural dynamics design, analysis and test

• Starshade
• Allows for a smaller telescope (4m instead of 8m) to achieve the same level of exoplanet 

characterization over a broad spectral band

• A smaller starshade design (~52 m) is being developed to improve technology readiness.
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