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@/s:;::ﬂ:s:z:w Climate Change Prediction

Multi-model Averages and Assessed Ranges for Surface Warming
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Cloud modeling uncertainties and cloud interaction with radiation
lead to significant uncertainties in climate prediction
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Highly reflective stratocumulus

clouds (large cloud cover)
Cumulus cloud

(virtually clear sky,
much less reflection)

Hypothesis: Changes in the properties of stratocumulus-to-
cumulus transition play a key role in cloud-climate feedbacks
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Which climatological factors control the climatological transition”?

Stratus Cloud Amount vs. Stability
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Which specific physical processes determine the cloud transition”?
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In key transition region:
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In essence: Increase of surface latent heat flux
balanced by increase in surface SW radiation

=» Cloud cover (a) equation:
1 LW + LH + SH
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" LTS Simple Model of the Transition
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Empirical linear relation between cloud cover and Lower Tropospheric
Stability (LTS) established for a while (e.g. Klein and Hartmann, 93)

LES + PBL energy balance leads to (15t order):

Where:

CF — cloud cover
h — PBL height

" hD
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D — large-scale divergence
FO — LW flux divergence at cloud-top
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LES results
confirm this
relation for a
few cases
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Chung et al, JAS, 2012



Simple Coupled Model

CF=alLTS +f3
<CF=i+ LH+SH + LW
ac )/SW (1 o ao )acMathw/toa

With LH = pLCy,, U|q,(SST)- RHq (T,)]

* Two equations and two unknowns: SST and cloud cover

* Coupled model from (i) the linear LTS relation and (ii)
the surface energy balance equation

* a and 3 have to be defined
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PP e and 3 from ERA-Interim

SST vs Lat, alpha=16.6 beta=-182

— Coupled model -
—— Obs ERA-Interim 89-07
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Cloud and SST changes are well described by coupled
model using coefficients from ERA-Interim
Radet & Teixeira, 2018
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wrmmswen— [JOE Marine ARM GPCI Investigations of Clouds:
Caoi st of ecolsy MAGIC

One year [Sep. 2012-2013]
deployment of ARM mobile
facility on cargo ship
between Los Angeles and
Honolulu

Fig. 1. Horizon Spirir and possible locations for AMF2 operations.
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Water vapor profiles and cloud radar reflectivit
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Diversity of cloud
transition patterns

But

Also common key
physical processes

Honolulu

MAGIC: unique observational dataset depicting cloud transitions
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Turbulence, Clouds and Convection Parameterizations
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are modular

deep convection
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Deep Tropics From IPCC AR5 Subtropics

Artificial modularity leads to many problems: interfaces, transition

Key goal: Unified parameterization for boundary layer and convection
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Dividing a grid square in two regions (updraft and environment) and
using Reynolds decomposition and averaging leads to

w'o'=aw'e' +(1-a,)w'e" +a,(-a,)w,~w,)@,-0,)

where a,, is the updraft area. Assuming a,<<7 and w,~0 leads to

1o 1At N
W =W +a w T
P g.Taw, (¢” ¢) Bimodal joint pdf of w and qt

ED closure: assuming ED for 1st S L T
term and neglecting 2" term — | P

MF closure: neglecting 15t term and
assuming M=a, w,

q, (g/kg)

o0p
EDMF: w'op'=-k 8¢+M((PM o) ED mixing

Siebesma & Teixeira, 2000 w (m/s)

EDMF represents different turbulence and convection scales
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Mass-Flux Model for Plumes/Updrafts

1) Integrating over plume area

2) Assuming steady-state

3) Neglecting some sources/sinks

P _
2, :_g(¢u_¢)for¢€{f9p%}
(074
M=cw,
, _
l@Wu :—bng_Faé(evu_eV)
2 0z <

0, is updraft/plume area fraction and is
fixed for each plume in our approach



= EDME and moist convection: multiple

W —zm plumes and stochastic entrainment

Suselj et al. JAS, 2012

3) Stochastic
Suselj et al. JAS, 2013

lateral entrainment

Inspired by
Romps & Kuang,
JAS, 2010

aNSV)

LI N

1) Parameterization of surface layer PDF of thermodynamics
2) Monte Carlo sampling of PDF to produce multiple plumes

Provides estimates of updraft area and avoids need for cloud base closure
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BOMEX: Comparison of EDMF moist updraft properties against LES results
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Suselj et al, 2018

Low sensitivity of multiple-plume EDMF to
surface updraft area
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EDMF multiple plumes represent skewed part of PDF
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EDMF Results: Sc to Cu Transition
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EDMF is able to represent the vertical dynamics of the transition
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New fully unified (PBL + shallow + deep convection) EDMF
evaluated for the LBA diurnal cycle of precipitating convection

Cloud base and top Cumulative surface precipitation
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Realistic transition with EDMF from shallow to deep convection



500 EDMF SCM simulations (June 2007) between Los Angeles
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and Hawaii forced by large-scale fields from MERRA2

Observations
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aaaaaaaaaaaaaaaaaaaaa EDI\/IF forced by Re-Analysis: realistic
” response to climatological forcing

EDMF represents the physics of the cloud transition and leads to
realistic response to climatological factors such as LTS
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Sc-to-Cu transition will likely play key role in cloud-climate feedback

Climate models cannot represent cloud transition realistically

Surface energy balance equation in transition region leads to realistic
simple model of cloud cover as a function of SST

Simple coupled model (CC and SST) based on (i) surface energy
balance and (ii) PBL energy balance (LTS relation)

Shows that (to first order) SST and clouds are strongly and uniquely
coupled in the Sc-to-Cu transition region

EDMF approach reproduces thermodynamic structure of transition

EDMF responds realistically to climatological forcing of transition




