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Technology Maturity
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Number of Gaps

TRL 3 TRL 4 TRL 5

Expected 2019 1 7 7

Expected 2022 0 3 12



Starshade Deployment

3



Truss Deployment Test
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Petal deployment accuracy 

• Starshade tolerances scale linearly

• SOA
• 12 m flight-like truss

• Petal deployment tolerance <0.15 mm

• Requirement for 40 m truss
• +- 0.5 mm (3s) bias

• +- 1.5 mm (3s) stability

• In operational environment

• Path
• S5 5m truss half-scale demo for 10 m truss 

• HabEx 72m starshade requires 20m half-
scale demo truss
• Starshade size reductions under consideration 

to more closely match S5 truss demo size
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Petal shape and stability.
• SOA

• 6m prototype petal manufactured to <100 um tolerance

• Requirement for 16m petal
• Shape manufacture to +-115 um (3s)
• Deployed shape to < +- 230 um (3s)
• Stability (thermal)

• Disk to petal strain < 30 ppm

• 1-5 cycle petal width <20 ppm

• Path
• 8 m half-scale petal for S5 applies to HabEx
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Solar Edge Scatter

• SOA
• Metal edges (coupons)meet all specs but in-plane shape 

tolerance

• Graphite edges produce low reflectance of 25 Vmag in 
two main lobses

• Requirement
• Petal-edge in-plane shape tolerance 40 um

• Solar glint at 25 Vmag in two main lobes

• Path
• S5 to demonstrate performance at edge segment level

• Sufficient demonstration for HabEx
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SEM images of the beveled 
edge and terminal edge 



Formation Sensing

• SOA
• Out-of-band sensing of pupil plane images show 

structure in the low-contrast starshade shadow
• Simulations show ample star flux for control loop and < 

0.15 cm lateral displacement (0.01 pixel star positions)

• Requirements 
• Demonstrate sensing lateral errors to 0.20 m accuracy, 

=< 1 mas bearing angle
• Demonstrate control algorithms to scaled lateral errors 

=< 1m

• Path
• S5 testbed demonstration is sufficient for HabEx

FY2018 
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Illustration of lateral sensing 
using pupil-plane image matching 

Preliminary results 
Simulation Testbed



Optical Performance and Model Validation
• SOA

• 6E-6 suppression in pupil plane at Fresnel No. 
15 broadband

• 4.8E-8 suppression in pupil plane, 5E-10 
constrast at Fresnel No. 27, monochromatic

• Requirements
• Experimentally validated models 

• with suppression  <1E-8, F1.0 between 5 and 40 
(broadband)

• Traceable to 1E-10 contrast system performance 

• Path
• S5 testbed at Princeton expected TRL 5 2018 

is sufficient for HabEx
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S5’s starshade model validation testbed at Princeton.

Model starshade



Large Mirror Fabrication

• SLS allows for moderate lightweighting

• Microthrusters allow for low first frequency

• SOA
• 4.2m DKIST primary mirror by Schott, UA (2nm surface 

roughness)
• 4m ELT M2 by Schott
• Zerodur CTE homogeneity 10 ppb/K
• Lightweight cell 340 mm deep, 2mm wall

• Requirements
• Wavefront thermal stability ~1 nm over 100s of seconds 
• First mode > 60 Hz

• Path
• 4m demonstrator for TRL 5
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4.2 m Daniel K. Inouye Solar 
Telescope primary mirror

SCHOTT 700 mm diameter and 
200 mm high Zerodur® 
demonstration piece showing 
advanced lightweighting, cells with 
2 mm machined walls, and 
contouring of the back. 



Coronagraph Architecture

• Requires 10-10 raw contrast from 2.4 to 32 λ/D for 20% bandwidth

• SOA
• VVC 5E-10 monochromatic, 

• 3-8 l/D, 2-7 l/D
• 1E-8 10% BW

• HLC  linear mask
• 6E-10, 10% BW, 3-16 l/D

• Requirement 
• 1E-10 raw contrast, 20% BW, 
• 1E-11 contrast stability
• IWA = 2.4 l/D
• Coronagraph throughput  >= 10%
• Dual polarization operation

• Path
• ExEP Decadal Studies Testbed seeks to show 1E-10 raw contrast with VVC in static 

environment by 2019
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The ExEP Decadal Studies Testbed (DST) strives to achieve 
10-10 raw contrast for an unobscured aperture.



LOWFS/C
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• Low Order 
Wavefront Sensing 
and Control 
(LOWFS/C) 
demonstrated in 
testbed for 
WFIRST with jitter 
and focus input 
disturbance.

• The HabEx jitter 
environment is 
much more benign 
due to 
microthrusters.

• Path 
• Demonstrate in full 

coronagraph testbed with 
WFIRST CGI like 
progression



DMs and visible detectors

• Visible detectors are EM-CCDs
• CCD201: 1024 pixels for cameras

• CCD282: 2048 pixels for coro. IFS

• CCD282: 4096 pixels for Starshade IFS

• WFIRST-CGI lab results for dark 
current meet HabEx requirements

• WFIRST-CGI EMCCD requirements 
meet HabEx needs

• Boston Micromachines Corp (BMC) 
Deformable Mirrors (DMs)
• 0.4 mm pitch

• Micro Electrical Mechanical System (MEMS)

• 64 x 64 actuators (4096 actuators)

• Under test in the DST

• Environmental testing in progress (TDEM)

• Phase 2 SBIR to improve residual WFE

13

E2v CCD201, 1024 pixels wide
BMC 64x64 DM

Image courtesy BMC

Image courtesy e2v



Enhancing Technologies

• Far-UV Enhanced coatings for 
100 nm cutoff

• SOA (TRL 3)
• Al+LiF+AlF3 proof of concept show 

3 year stability

• Requirement
• Operational life >10 years

• Path
• Adopt if mature in time

• Delta-Doped UV EMCCD

• SOA (TRL 4)
• Same noise performance as Visible 

EMCCDs, reduced performance at 
4k x 4k format

• Requirement
• 4kx4k format for UV Spectrograph

• Path
• Adopt if mature in time
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Maturation Timeline
task start end

Petal Shape 2019 2022

Petal deployment

S5 2019 2021

HabEx 2022 2025

Starshade Edge Scatter 2018 2020

Large Mirror Fab

Mirror Fab & Test 2022 2024

Coating Chamber Fab & Coupon Tests 2022 2024

Mirror Coating 2024 2026

Coronagraph Instrument Testbed

LOWFS (WFIRST) 2018 2018

VV6 Design 2019 2019

HCIT Modification 2020 2020

1E-10 Contrast, 20% BW, Dynamic 2021 2022

DM

Environment Testing 2018 2018

Performance in DST 2019 2019
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HabEx Presentations & Posters
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Title Presenter Date • Time
HabEx Ultraviolet spectrograph design and DRM Paul A. Scowen 10 June 2018 • 10:00 AM

Solid state detectors for the Habitable Exoplanet imaging mission (HabEx) and the large UV/optical/infrared (LUVOIR) surveyor mission 
concepts

Shouleh Nikzad 10 June 2018 • 11:10 AM

The habitable exoplanet imaging mission (HabEx): science goals and projected capabilities Scott B. Gaudi 11 June 2018 • 10:30 AM

The habitable exoplanet imaging mission (HabEx) Bertrand Mennesson 11 June 2018 • 1:20 PM

Overview of the 4m baseline architecture concept of the habitable exoplanet imaging mission (HabEx) study Gary M. Kuan 11 June 2018 • 1:40 PM

The HabEx workhorse camera Paul A. Scowen 11 June 2018 • 2:00 PM

Technology maturity for the habitable-zone exoplanet imaging mission (HabEx) concept Rhonda M. Morgan 11 June 2018 • 2:20 PM

HabEx Space telescope exoplanet instruments Stefan R. Martin 11 June 2018 • 2:40 PM

HabEx: high precision pointing architecture using micro-thrusters and fine steering mirror Oscar S. Alvarez-Salazar 11 June 2018 • 3:30 PM

Numerically optimized coronagraph designs for the habitable exoplanet imaging mission (HabEx) A J Eldorado Riggs 11 June 2018 • 3:50 PM

Overview and performance prediction of the baseline 4-meter telescope concept design for the habitable-zone exoplanet direct imaging 
mission

H. Philip Stahl 11 June 2018 • 4:10 PM

HabEx Lite: a starshade-only habitable exoplanet imager alternative David Redding 11 June 2018 • 4:30 PM

Terrestrial exoplanet coronagraph image quality: study of polarization aberrations in Habex and LUVOIR update
James Breckinridge, 
Russell A. Chipman

13 June 2018 • 10:30 AM

Poster Title Presenter Date • Time
HabEx polarization ray trace and aberration analysis Jeffrey Davis 11 June 2018 • 5:30  PM

HabEx space telescope optical system overview Stefan R. Martin 11 June 2018 • 5:30 PM

HabEx telescope WFE stability specification derived from coronagraph starlight leakage Bijan Nemati 11 June 2018 • 5:30 PM

Mirror design study for a segmented HabEx system James T. Mooney 11 June 2018 • 5:30 PM

Overview and performance prediction fo the alternative 6.5-meter telescope concept design for the habitable-zone exoplanet 
direct imaging mission

H. Philip Stahl 11 June 2018 • 5:30 PM

Pre-Decisional - For Planning Purposes Only

Talks and Posters



BACKUP
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Microthrusters
• SOA

• Colloidal (CMT): 5-30 uN thrust, 0.1 uN resolution
• 100 days on ESA/NASA LISA Pathfinder

• Cold Gas: 1mN max thrust, 0.1 uN resolution
• 4 years on orbit operations on ESA Gaia

• May be on Euclid

• Requirement
• Thrust capability of 0.35 mN
• Operating life of 5 years

• Path:
• PCOS maturing TRL7 CMT to TRL6 for ESA-led LISA mission
• Trade Colloidal with cold gas microthrusters
• Trade: active isolation + RCS with monoprop + microthrusters
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A single cluster of four 
Busek Co. CMTs 
integrated on the LISA 
Pathfinder Spacecraft 
just prior to launch.



Laser Metrology

• SOA
• Laser: Nd:YAG ring laser and modulator on LISA Pathfinder

• Thermally stabilized Planar Lightwave Circuit fully tested

• Requirements
• Sense at 1 kHz BW

• Uncorrelated per gauge error of 0.1nm

• Path
• At TRL 5 for HabEx
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PLC beam launcher 



Baseline Architecture
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Solar Array
flat on sun side

Sunshade

Secondary Mirror

Telescope Scarf

Reusable Door

4m monolithic
Primary Mirror

Tertiary Mirror Assembly
& Instruments

The 4m monolithic primary TRL of 4 is enabled by microthrusters and the SLS lift capacity

WED 5:30 pm, 246.38. HabEx Optical Telescope Concepts: Design 
and Performance Analysis  H. P. Stahl



Baseline Instruments
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Instrument footprints at the Tertiary Mirror

HabEx Instruments

Instrument Layout

Primary Mirror



Starshade
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72-meter

124,000km

• Propulsion (Occulter)

• Solar Electric Propulsion (SEP) with Hermes Hall effect 

thrusters for slewing (repositioning)

• Biprop thrusters for attitude control

• >100 targets / 5yrs

• Observing

• ≤10-10 Suppression

• 40 – 83 degree sun-angles

• 450 – 1000nm wavelengths at nominal separation

• IWA =  62 mas

• IFS, R = 140

• 150– 300nm wavelengths at farther distance

• IWA = 28 mas

• Grism, R = 7

• 1000 – 1800nm at closer distance

• IWA = 111 mas

• Slit spectrograph, R = 140

• OWA = 1.9 arcsec

Technology Maturity

• The Starshade to TRL 5 (S-5 ) project is maturing 5 starshade

technology gaps to TRL 5: 3 by the end of 2019 and 2 by 2021 

• S-5 demonstration on a 26 m starshade achieves HabEx 

requirements on HabEx 72 m starshade because requirements 

scale by angle to starshade.



Workhorse camera, UVS
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Workhorse Camera Instrument 

Purpose: 
Multi-purpose, wide-field imaging camera and spectrograph 
for general astrophysics 

Waveband:   

•   UV: • 150nm – 400nm 

•   Vis: • 400nm – 950nm 

•   NIR: • 950nm - 1800nm (2500nm goal) 

Telescope Diffraction Limit: 400nm 

Field-of-view: 3 arcmin x 3 arcmin 

Spectral Resolution: R = 2000 

Detector:   

•   UV/Vis: • 3x3 CCD203 

     12288x12288 pixels 

•   NIR: • 2x2 H4RG10 
		    8192x8192 pixels 

Multi-Object Spectroscopy (MOS) capable 
Micro-shutter array, 

2x2 array 200x100 um 171x365 apertures 

UV Spectrograph Instrument 

Purpose: High resolution, UV spectroscopy for general astrophysics 

Waveband: 
115nm – 360nm (20 bands) 

•   Spectroscopy: 

Telescope Diffraction Limit: 400nm 

Field-of-view: 3 arcmin x 3 arcmin 

Spectral Resolution: R = 500 – 60,000 (band dependent) 

Detector 
• 6x6 MCP array, 100mm sq each 

• 60000x60000 pixels 

Multi-Object Spectroscopy (MOS) capable 
Micro-shutter array, 

2x2 array 200x100 um 171x365 apertures 

• UV requirements are met by the state of the art.

• UV Performance can be enhanced by advancements in UV coatings and detectors


