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Breaking Down “Step Two”

Nav uncertainty Nav uncertainty + burn dispersions

CHECKLIST FOR SAFE
LANDING ON EUROPA

1. Slow dowmn

2. Figure out where we are
3. Fly to target

4. Find safe place to [and

1 | and go there

Initial Condition 5. Gently deliver payload
High altitude, moving fast & toward the
landing site, uncertain where we are

/\ s
Final Condition
Gently deliver the payload to a safe

A N A AN\A /\ A A and scientifically interesting location
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DDL Subphases
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1. Slow Down

Initial Localization

Wait for Powered
Approach

DOS Jettison
& Avoidance

. Powered Approach % Altitude Correction
Deorbit
~ . Faasd Visual Odometry
- Starts at ~6 km altltUde ,ﬁﬁ for Hazard Detection
= Reduces surface-relative velocity ®
it } H d Detecti

from 1,850 to 100 m/s ’@ srard Betection
= Star 48 class fixed-nozzle SRM |, Hazard Avoidance
= Burnsover 1,500 kg of fuel in a | ,

. . < s Visual Odometry

little over 1 min ‘ for Touchdown
=  Thrust vector control via 4x MR- ‘ Constant Velocity

. ¢
104 engines ; Constant Deceleration |
. . F

= Burn time error results in +4 km . , yawey

burn-out position error '@ %
* 5-DOF control: no downrange MEOB  SkyCrane %

control but known cross-track and

radial position errors are removed
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Deorbit

Initial Localization

Terrain Relative Navigation (TRN)
using on-board camera
Map-relative position obtained via
landmark matching of TRN camera
images to reconnaissance maps
from Clipper

Surface-relative velocity obtained
through visual odometry

Seeded with lidar altimetry
Enables ~100 m navigation error
at touchdown
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3. Fly to Target
______ E—
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=  Follows profiled 6-DOF maneuver ,@ﬁ for Hazard Detection
using MSL-heritage polynomial ®
. el Hazard Detection
guidance ’@ﬁ
[e .
* Guidance steers PDV to altitude M Hazard Avoidance
~1 km above landing site with
Lo Visual Odometry
VH =0 1 for Touchdown
. )
=  6-DOF control via 8x Descent : Constant Velocity
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Engl nes i Constant Deceleration
+ Flyaway
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Position Dispersions Before & After

=  Map-relative localization and visual odometry shrink knowledge error
= Powered approach cleans up SRM burnout control error
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Deorbit

Wait for Powered

Approach
DOS Jettison it

& Avoidance

Hazard Detection & Avoidance

= Lidarscansa 100 m x 100 m area

= Hazard detection algorithm
locates safest place to land

= Guidance steers PDV to point
directly above target, <50 m
divert

=  6-DOF control via 8x Descent
Engines

= Significantly improves chances of
achieving safe landing in
hazardous terrain
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5. Gently Deliver Payload

Initial Localization

Coast Deorbit Wait for Powered
. Approach
DOS Jettison
& Avoidance
Powered Approach % Altitude Correction
Sky Crane - r—
« e . . . 7 & ISua ometry
=  Minimizes site alteration and ﬁﬁ for Hazard Detection
contamination 6
it } H d Detecti
» Descent Stage & Lander separate ’@ srare metecton
at ~24 m altitude, V,, =-0.5 m/s Hazard Avoidance
= lLander deployed on bridle |
. : X Visual Odometry
= Cut bridle, lock pose, Descent 12.3m ‘ for Touchdown
) . : ¢
Stage flies away & ignites ! Constant Velocity
e e ¢
ste rlllzatlon SyStem ; Constant Deceleration
. FlI
»  6-DOF control via 4x canted . , yaway
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Summary
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Based on cartoon by Sidney Harris, original image credit
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Backup
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