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Two Types of Modular Actuators
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Bag of Behaviors + Sequential
Composition

Approach to Autonomy



Sequential Composition
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Autonomous Telescope Assembly




Autonomous Telescope Assembly
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The full end-to-end sequence is broken down into subtasks that are
autonomously executed separately. Each subtask is specified by a
command sequence that is stored in a sequence file. A command
sequence is hierarchical including subsequences or sequence commands.




Sub-Sequence 1:
Autonomous Sequence to Pick up a Truss From the Truss Dispenser

manip_unsqueeze

ocu_find_tag man_upper

ocu_goto_navgoal truss

ocu_find_tag man_upper

ocu_goto_navgoal truss @

5 @ shortest @

~70 Lines

seq_run dual_cage.seq

left @ 1 0 0.3065 mob_run_wb_primitive pregraspreset

B 4 shortest @ ocu_find_tag haz_right right @ 1 5 ©.162

ocu_goto_eegoal tag 5 6 1 limb1

2 0 limb1
18 Llimba

ctrli_drive_linear -8.01 @.1 @

left @ 1 8@ @.3065 - ’ f

ctrl_drive_linear 1.5 8.1 @

512 @ limb1l
511 & limb4

manip_sgqueeze 100
right @ 1 5 @.162

seg_run dual_close.seq

Sequence files are made up of parameterized commands.




What we did not do

* No accurate calibration (precise not accurate)
* No external meterology
* No continuous fiducial tracking

* No long term memory



What we did do

Gated Recognition

e Selected camera’s based on distance and
angle
* to prevent outliers

Funneling via construction
* big corrections at the beginning

* small corrections at the end
chose behaviors that enabled the above
by construction

3 pairs of
Front Facing
Cameras

High Brain
Computer

2 pairs of
Belly Cameras

Battery

Low Brain
Computer

Wireless
Router

2 pairs of
Side Cameras




Behaviors at the DRC
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Proprioceptive feedback

“ego-centric sense of position & movement w.r.t the environment...”

“... of robot’s body or a manipuland”



Proprioceptive Feedback

1. Why care?
2. How we used it in recent past?

3. Ongoing/Future work
Towards future NASA missions?



Proprioceptive Feedback & Mobile
Manipulation

* Mobile Manipulation
Go somewhere and do something

Do more with less sensing, task specification and a priori information.

* Using feedback to adjust a rough inaccurate task specification
Specfically setpoints in SE(3))



Ego-centric Feedback (SE(3))
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Why Proprioceptive Feedback?

* Ego-centric
e can offset requirements on localization performance

* can offset sensitivity to worst case performance of recognition
tasks

» Effective if correlated with task performance & control inputs
* Can monitor task and do something about it

* E.g. current feedback + high friction actuators is ineffective

* good signal with control inputs
e poor signal with task performance



Proprioceptive Feedback

1. Why care?
2. How we used it in recent past?

3. Ongoing/Future work
Towards future NASA missions?



Force feedback behaviors

Using force measurements as a direction fix

(measurements on the tangent space of SE(3))
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Posture control

For Locomotion



Whole-Body Posture
& Admittance Control
for
Locomotion

Jet Propulsion Laboratory
California Institute of Technology




Bracing

EE wrench -> torso twist



Dual-arm
Bracing

4x

Jet Propulsion Laboratory
California Institute of Technology

2014

* Easy to get into brace posture, hard to get out of it (actuator torque overload).
* When to unbrace?
e Using braced EE force measurement to drive torso movement



DRC Egress

Mobile Manipulation as a Grasping Problem



RoboSimian
Egress

16x

Jet Propulsion Laboratory
California Institute of Technology

* 3D Locomotion — Open loop trajectory following + Leg odometry
* Interspersed with force feedback behaviors to relieve internal force buildup
* Force closure problem



Dual Arm Squeeze
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Shifting Contents




Dual-arm Squeeze Behavior
Autonomy vs. Semi-autonomy

8x

Jet Propulsion Laboratory
California Institute of Technology




Probe and Adapt

Screw theory meets probability theory



One Behavior + N Objects
Random First Grasps

-Operator input

(b) Grasp 2 - Chair (c) Grasp 3 - Chair (d) Grasp 4 - Chair

Perturb with arm1

-Estimate CoM
-Update shape envelope
-Determine best placement for arm 2

Pre-manipulate for
workspace feasibility

- Update shape envelope - Move arm1 to get desired EE2 placement
- Determine new placement for EE2 within the feasible workspace

¢) Grasp 3 - Hand-truck (h) Grasp 4 - Hand-truck

Move arm2 to contact
until a force setpoint is
reached

| e

(1) Grasp 4 - Pallet

i A
(k) Grasp 3 - Pallet

Success - Update shape envelope

(m) Grasp 1 - Stanchion

(p) Grasp 4 - Stanchion

(q) Grasp | - Truss (r) Grasp 2 - Truss
37



Unknown Bulky Objects

Automatic selection of second end effector
based on iterative inference of CoM and Shape
via force torque measurements only.

Estimating CoM and Shape of an
unknown object via physical interaction

. Dual arm manipulation of unknown bulky objects

. Unknown inertial properties (weight and mass distribution).

. Severe self-occlusions in sensing field-of-view at close proximity.
. Using force torque measurements alone.

. Stable under disturbances from clutter

. Fast convergence with few trials.

. A Probe & Adapt Strategy.

38



Noisy Exteroception
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Noisy Exteroception
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https://voutu.be/hQ 3PeVhk5E

M. Burkhardt, S. Karumanchi, K. Edelberg, J. Burdick, and P. Backes, "'Proprioceptive Inference for Dual-Arm
Grasping of Bulky Objects Using RoboSimian®, IEEE International Conference on Robotics and Automation (ICRA),
2018
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https://youtu.be/hQ_3PeVhk5E

Inference Approach

CoM inference in a Bayesian Inference Framework Shape inference in a Bayesian Inference Framework

CoM
Estimate
AT Shape Estimate as an
I P v s Implicit Surface
i :J © l/ (Mean shown as a Mesh;
fjj:“% N T, Areogtewrendh messuremen Color implies Variance)

Predictive distribution after two wrench measurements
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CoM Estimation
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Enhanced CoM Estimation
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Under Disturbance

With Kicking
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Deformable Objects

DEFORMABLE OBJECTS

48



Deformable Objects
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Shape inference in a Bayesian Inference Framework

(we expect wrench measurements to be noisy)
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Automatically selecting goals for the second end effector

Particle Filter

Bayesian
Update on
Candidate EE
goals

¢ Prig Particles < terior Particles

Next-best touch paradigm



Automatically selecting goals for the second end effector

Particle Filter
Update
(Low variance
resampling)

Bayesian
Update on
Candidate EE
goals

Pfjifdr"Particles ( Posterior Particles

Next-best touch paradigm



Proprioceptive Feedback

1. Why care?
2. How we used it in recent past?

3. Ongoing/Future work
Towards future NASA missions?



Onboard Reasoning

Redundant behaviors & Autoselection



Multi-modal mobility

Multi-modal Mobility

16x

_ Jet Propulsion Laboratory
Gy California Institute of Technology




Feasibility Graph

Restricted space for multi-modal mobility

sculling crawling

scull2splay .

primitives
postures

stand2scull

drive2stand

N stand2drive
driving

inchworming

2018-02-27 8x Strategic Investments MMR
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Offline Testing

Autoselection of Mobility Modes
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Jet Propulsion Laboratory
California Institute of Technology
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Multi-Armed Bandit Problem

* Reinforcement Learning (RL) Approach
* N discrete actions Unobservable State

Bounded operation on Feasibility Graph
* Feasibility verified offline via extensive on-earth experimentation

Mobility mode selection via online performance monitoring

Reward Signal for Reinforcement Learning
Units: Meters/Joule
translational progress per unit energy consumption

Fundamental exploration vs. exploitation tradeoff.

* Use a differential reward signal (expected vs. observed).
* observed = expected — exploit
* observed # expected — explore




Future NASA Missions

* Missions with Longer & Longer Comms Delays
* On-board autonomy

* Autonomy is a umbrella term
* Auto Sequencing
Fault handling
Mission Planning
Determining Science value
Negotiating unknown harsh environments



Summary

* Simple behaviors generalize better.

* First Order:
* Using feedback + optimization to adjust task set-points.
* Does not need perfect localization and prior maps.

* Second Order:
* Use probing and inference to select task set-points iteratively.

e Third Order:

* Reason over redundant behaviors via RL on a behavior graph.



