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Introduction

• In the Interplanetary Network Directorate we like to 
say that one cannot do a deep space mission 
without us—no communication, no mission

• However, there is no communication without power

10/22/18 2

PIF—Power Is Fundamental
(but not the whole story)
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A History of Improving Deep Space Communications
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planets:  Mercury 
and Venus

1st close-up 
study of outer 

planets

Jupiter 
orbiter

K
a-

B
an

d 

Saturn orbiter

K
a-

ba
nd

 A
rr

ay

TV relayed 
by satellite

1st Mini 
Computer

1st Cell 
Phone

IBM PC 
Released

Internet 
made 
Public

1st Hand-Held 
GPS Receiver

iPhone 
Released

Discovery of 
1,000th planet

1st US 
Spacecraft to fly 

by the Moon 

History to date:
Performance has improved by 1013 so far

Improvements follow 
technology trends
• Larger launch vehicles 

and spacecraft
• More spacecraft prime 

power
• Power amplifier output 

power and efficiency 
improvements

• Larger antennas—both 
flight and ground

• Moving up in frequency—
optical is next

Plenty of room to 
continue to improve. 
We haven’t hit our 
“Moore’s Law” limit 
yet
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The Link Equation—focus on the downlink power

• The data rate supported by the link is a function of the received signal 
power, 𝑃!

𝑃! = 𝑃"𝐺"𝐿"𝐿#$𝐺!𝐿!
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and with a little math-magic
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%
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− Note that all things being equal, higher frequency is better!
(it’s never that easy)
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• 𝐿!" = 𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒 𝑙𝑜𝑠𝑠
• 𝑃# = 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟 (𝑊)
• 𝐺# = 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑔𝑎𝑖𝑛
• 𝐿# = 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑙𝑜𝑠𝑠𝑒𝑠

• 𝐺$ = 𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑔𝑎𝑖𝑛
• 𝐿$ = 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑙𝑜𝑠𝑠𝑒𝑠
• 𝐴# = 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑎𝑟𝑒𝑎 𝑚%

• 𝐴$ = 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑎𝑟𝑒𝑎 𝑚%

• 𝑐 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 ⁄𝑚 𝑠
• 𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟 𝑎𝑛𝑑 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑚
• 𝑓 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧)
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The Link Equation—focus on noise
• The downlink power has to “overcome” the noise at the 

receiver so we can extract the information
• Noise at the receiver can be caused by many factors

• One is the inherent noise in the electronics
• The electronics noise in bandwidth 𝐵 (𝐻𝑧) is

𝑃J = 𝑁K𝐵 = 𝑘𝑇𝐵
𝑁$ is the noise power spectral density ( ⁄𝑊 𝐻𝑧)
𝑘 is Boltzmann’s constant 1.38 x 10%&' ⁄𝑊 𝐾 𝐻𝑧
𝑇 is the system temperature 𝐾

• We use cryogenically cooled amplifiers to keep T down

• And there are other noise sources to take into account
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Ka-band (32 GHz) low 
noise amplifier 
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DSN Facilities by 2025
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Historically we have 
tried to reduce the 
burden on the deep 
space missions by 
building large 
antennas on Earth

• Receive
− High gain
− Low noise
− Arraying

• Transmit
− Higher output power
− Arraying

• Support multiple 
missions 
simultaneously

Madrid,
Spain

Canberra,
Australia

Signal Processing
Center SPC-60

Signal Processing
Center SPC-40

Signal Processing
Center SPC-10

Network
Operations
Control
Center
at JPL,
Pasadena , CA

MIL-71
DSN KSC
Launch Support
Facility

DSS-14
70m

DSS-43
70m

DSS-63
70m

DSS-45
34m High
Efficiency
(HEF)

DSS-65
34m High
Efficiency
(HEF)

DSS-15
34m High
Efficiency
(HEF)

DSS-25
(BWG-2)

DSS-26
(BWG-3)

DSS-24
34m (BWG-1)

DSS-54
34m (BWG-1)

DSS-34
34m (BWG-1)

DSS-55
(BWG-2)

DSS-35
(BWG-2)

Goldstone, CA
(near Fort Irwin, Barstow)
USA

DSS-13 
34m BWG 
& HP Test 
Facility

New 80 kW
Transmitter

New 34m
BWG Antenna

LEGEND
DSS-23

(BWG-4)
DSS-56

(BWG-3)

DSS-53
(BWG-4)

DSS-33
(BWG-4)

DSS-36
(BWG-3)

Antennas
Operational Dates
DSS-35   10/2014
DSS-36   10/2016
DSS-56   10/2019
DSS-53   10/2020
DSS-33   10/2022
DSS-23   10/2024

80 kW XTR
Operational Dates
DSS-26   9/2015
DSS-53   10/2020
DSS-33   10/2022
DSS-23   10/2024

Madrid,
Spain

Canberra,
Australia

Goldstone, CA
(near Fort Irwin, Barstow)
USA
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Power Amplifiers—Higher efficiency and Higher power
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Traveling Wave Tube Amplifiers (TWTA)
• Workhorse of deep space flight comm
• Vacuum system—somewhat of an art
• Power levels of 200 W and more at Ka-band
• Efficiency of 50%-60%--can get a bit higher
• High voltage power supplies, e.g., 350 V

Solid State Power Amplifiers (SSPA)
• Power levels of <10 W for Ka-band flight
• Efficiencies of 25% or less
• Goal of 10-50 W with 40%-50% efficiencies with GaN
• Expected to be smaller, lower mass, more rugged 

and easily manufacturable

200 W Ka-band
TWTA developed 
in mid 2000s but 
has yet to fly 
because no 
mission has, or 
has been willing to 
allocate, that sort 
of power to comm

2 W 
Lockheed 
Martin Ka-
band 
SSPA 
developed 
for DS-1 
late 1990s

Improving efficiency can only get us so far-> Need more prime power
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Antennas—Bigger is better
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Galileo  S & X-band
4.8 m Deployable (oops!)

MRO X and Ka
3.0 m Solid

Cassini S, X and Ka-band
4.0 m Solid

New Horizons X-band
2.1 m Solid

SMAP L-Band
12.0 m Deployable

Inflatable Antenna Experiment
X-Band (?)

14.0 m Inflatable

What is wrong with this picture?
• Instrument data production rates continue to 

increase—no matter where in the Solar System
• As we go farther out we need larger antennas 

and/or more RF output power to return this data
• Large deployables—like those being used in 

GEO—will be needed
• Key is to keep mass low and aperture large
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Be as efficient as possible when sending data
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• FLEX achieves higher compression ratios than lossless compression and 
lossy transform-based methods when operating at high-fidelity compression. 
– FLEX’s predictor is specifically tailored to exploit the 3D spectral/spatial structure 

of HSI data.  This distinguishes FLEX from general-purpose image compressors 
(e.g., JPEG2000, JPEG, JPEG-LS) not designed specifically for HSI data.

• FLEX’s quantizer provides a quantitative guarantee on the nature of the loss 
introduced by compression.
– By contrast, transform-based compression approaches (e.g., wavelet-based 

JPEG2000 or DCT-based JPEG) generally do not control reconstruction error 
other than in mean square error (MSE) sense. Relevant image features may be 
locally distorted by an unquantifiable extent.

• FLEX’s implementation approach has substantially lower complexity than 
transform-based compression approaches

Fast Lossless Extended (FLEX): near-lossless MSI/HIS data 
compressor

• Inherits many of the desirable 
features of the underlying FL 
compressor:
– Low computational complexity
– Single-pass compression & 

decompression
– Automatic adaptation to 

source image data

File 
Size

Bit Rate 
(bits/sample) Compression

Original image file 385 MB 16 1×

Lossless compression, į=0 135 MB 5.6 2.9×

Near-lossless��į � 96 MB 4.0 4×

Near-lossless, į=4 67 MB 2.8 5.7×

Example of near-lossless compression performance on 
a calibrated MaRS hyperspectral image

į = maximum error in reconstructing the corresponding sample in Data 
Number

Error Correction Coding
• Adding “parity” bits to allow 

detection and correction of errors
• Reduces power required to send 

the “information bits”
• In deep space comm, usually 

implies larger RF bandwidth

Data Compression
• Don’t send bits that don’t need to be 

sent
• Examples:

− Long runs of zeros can be represented by a single 
number--the number of zeros

− Frequency bands with no content don’t need to be 
sent

− Bit patterns that occur more often can be encoded 
into shorter codewords—think Morse Code
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And then there’s optical

10

z

Palomar 200” receiver
Table Mountain 1m transmit

High Performance 
Optical Terminal

Hybrid RF/Optical 
Antenna
Potential reuse of existing 
infrastructure, in 
development today

• Planned Tech Demo 
on Psyche

• The equations are 
different but the same 
basic principles 
discussed for RF 
apply
− Remember going higher 

in frequency helps
− But factors like pointing 

and “antenna” surface 
quality become more 
problematic 

• Must deal with 
weather and 
atmosphere

• Much less mature 
than RF so plenty of 
room for efficiency 
improvements

Deep Space Optical 
Communication 

(DSOC)
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The Challenge—Outer Planets & Beyond

• In the inner solar system, we expect to be 
able to send gigabits/second of data by 
generating lots of power (solar or nuclear) 
and using large antennas (it’s not cheap...)

• The Outer Planets and Beyond are more of 
a challenge
− Need more power

• Really big, efficient, solar arrays
• Nuclear power

− Need large flight apertures
• RF: Large aperture, low mass, deployable antennas
• Optical: Large aperture, low mass telescopes

− More aperture on Earth would help
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jpl.nasa.gov



Deep Space Link Parameters

Space Loss, LS

Data Rate, r

Distance, d

Antenna Aperture, AR

Antenna Efficiency, µR

Pointing Loss, LPR

Cosmic
Background

Noise 

Hot Body 
Noise

Receiver Noise

Power, PT
Wavelength, l

Antenna Efficiency, µT
Antenna Aperture, AT

Pointing Loss, LT
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