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Outline

* Multi-angle/multi-pixel algorithms for 3D cloud
reconstruction
— Technion approach (3D optical tomography)

« Now with microphysical characterization

— Columbia approach (outer cloud shape only)
» Recent evolution at JPL

— Columbia/GISS->SRON approach (3D optical tomography)
* PhD thesis of Will Martin (adjoint 3D RT-based, pure theory)
* JQSRT paper by Martin, Cairns, and Bal
« Will Smith postdoc at SRON (numerical implementation & demo)
* JQSRT paper by Martin and Hasekamp

« Conclusions/outlooks
— (distributed across approaches)
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Synthetic Data

LES+SHDOM generated cloud field * 9 view angles:
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Synthetic Data

LES+SHDOM generated cloud field <+ 9 view angles:
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Synthetic Data

LES+SHDOM generated cloud field
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Fine-scale cloud tomography

Two-level
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A “Ancillary” integral RTE (solved with SHDOM)



Iterative multi-angle/multi-pixel algorithm

Bo B = arg/gnin”y - F(/)’)”2

" F(B)=I[8,J(B)] (formal solution)
J(B)=SHDOM(p) (Picard iteration)
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Iterative multi-angle/multi-pixel algorithm

Bo B= arg;nin”y - F([J’)”2

B = arg;ninlly -F(B1J))
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F(BIJ )=I1[B,J(B,)] (formal solution)
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AirMSPI Data

* 9view angles: £66.0°, £58.9°, +47.7°, £29.0° and Q°

* Pixel resolution: 10 m

 Extinction grid: 86,688 unknowns (at 60 m resolution)



Radiance Domain Comparison

AirMSPI’s nadir SHDOM rendered nadir

Recovered extinction
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* Cloud base at ~1.5 km
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... how relax the cloud
microphysics (r,,V,):
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... now relax the cloud
microphysics (r,, V,):
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Conclusions/outlook

« Accurate and practical 3D RT-based cloud tomography
(multi-angle/multi-pixel reconstruction) demonstrated on

— Synthetic data (known truth = rigorous error quantification)
» Large-Eddy Simulation clouds, then Monte Carlo 3D RT

— Real-world data from AirMSPI

* Now: seeking relevant validation data in field campaign collections

 Initialization

— Previously: no cloud!

— Currently: “space carving”

— Next: see “Columbia” approach, and beyond?
* Regularization

— Previously: none!

— Currently: only for microphysical profile

— Next: enforce fractal cloud structure?




Progress at Columbia

G. Bal, J. Chen, and A. B. Davis, Reconstruction of cloud geometry
from high-resolution multi-angle images, Inverse Problems in
Imaging (2018, in press).



Problem:
Retrieve External Cloud Shape

0 0
Z‘ /I\ Satellite track /b

T | Super-simple
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Main results

* Analytical “Frechet” derivatives: ou ou

da Of

* Insights

— Failure anticipated in 2 situations:

1. h”(x)=0, i.e., inflexion points (incl. flat surface!)
— fixed by regularization of the cost function

2. H’(6v) =0, l.e., Lambertian cloud-leaving radiance
 Numerical experiments
— 3 unknown functions + a few unknown numbers
— Increasing complexity ...



Numerical

experiments, 1

Data:
9 angles (MISR values)
51 grid points (pixels)

Easy case:

 Chandrasekhar H function-:
like angular model S(¢—-)

« Smooth boundary h(x)

« Uniform emittance a(x)
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Numerical | =)
experiments, 2 .|

Data: N

9 angles (MISR values) "l /)

51 grid points (pixels)

Tougher case: |
+ Chandrasekhar H function- .| a(x)

like angular model (same)
* More curvy boundary
« Solar-like escaping fluxes

O Recons tructed

Initial guess
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Numerical

experiments, 3

Data:
11 angles
201 points

Problematic case:
» Chandrasekhar H function- |
like angular model (same) |
* Curvy boundary expressed |
In polar coordinates
« Step function fluxes




Summary/outlook

Outer cloud shape reconstruction demonstrated

However, for the moment, the “inverse crime” is
committed: data is obtained from forward model!
— not even instrument noise was added

Worse, the boundary is assumed to be smooth:
hence, derivatives exist!

— Real clouds are fractal-shaped. So, at best, a smooth
approximation will be delivered at the scale of the
pixels in the real-world observations.

Present demo assumes high spatial resolution
— more like an airborne than space-based sensor



Progress at JPL

ROSES Terra-Aqua-Soumi/NPP proposal

Addressing cloud-related climate challenges with LES cloud- process
models, data from MISR and MODIS, and novel re- construction
techniques for 3D convective clouds

selected for funding. ©

... for using fused MISR/Terra’s multi-angle VIS (red channel, 275 m
pixels) and MODIS/Terra’s mono-angle SWIR (500 m pixels) to
extend Technion cloud tomography methodology from airborne to
space-based sensors.



Targeted “case study” ...
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Seiz, G., and R. Davies, Reconstruction of cloud geometry from multi-view satellite
images. Remote Sens. Environ., 100, 143-149 (20006).

Cornet, C., and R. Davies, Use of MISR measurements to study the radiative transfer

of an isolated convective cloud: Implications for cloud optical thickness retrieval, J.
Geophys. Res., 113, D04202 (2008).



Error quantification based on LES cloud scenes:

* MISR “fore” cameras: Df (+70.5°), Cf (+60°), Bf (+45.6°), Af (+26.1°) *
nadir camera: An (0°) -
MISR “aft” cameras: Da (—70.5°), Ca (—60°), Ba (—45.6°), Aa (—26.1°) . &S

400




Major challenges going from AirMSPI’s
fine-scale to coarser MISR+MODIS data:

o Forward modeling
» Pixels—hence voxels—are much bigger.
 They are opaque: very bad for SHDOM!
* They will have copious sub-pixel variability.
o Inverse problem solution
= How to inform forward model about the “optically
deep” zone, not worth computing in great detail?
» How to harmonize reconstruction with “information
value” of data? From there, how to bring the
computational effort to the appropriate level?
o ROSES/TASNPP proposal says ...
* |Implement Monte Carlo or hybrid 3D RT
» Use some form of data-driven regularizaton
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... and upgrade the synthetic data model (that is,
no more “inverse crime” committed).

Developed a 07F - - . =133 4
P e=a= -60.0 -
custom forward . o N~ EMo ]
[ amem -26.1 =2 90 =50
2D Monte Carlo 0.6 F 1 | S ;
code for convex _  _F ——e00 |2 )
polygon-shaped 5 | ’
“clouds:” % 04F
. 5 |
* 9 MISR views T o3t
simultaneously, :
via local M 0.2}
estimation :
0.1
* Triple Henyey- :
Greenstein phase OF

function to mimic
the famous “C1”




Use MatLab™’s Optimization Toolbox to fit Monte
Carlo data with the simple forward radiosity model.

radiancey = £, * (max{n;®,p0}), /= 1,...,9 (10 parameters)

rad; pixel; = 2 weight; * radiance,

facet, in view;

with 2 weight, < 1, for any pixel / (< at edge) and view j

facet, in view;

-> Isqnonlin “out of the box™ on 20 parameter inversion ...
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Summary/outlook

* Outer cloud shape reconstructed ... well enough
for the present purposes ... and very fast.

 What purposes?
— 1st guess for full 3D tomographic cloud reconstruction
— improvement of near-cloud retrievals affected by clouds

* Aerosols
* Trace gases
» Surface fluxes

* Next?
— 2D->3D (segments - facets/triangulation)
— non-convex shapes

— apply to MISR “test case”
— write/submit paper to MISR special issue in Remote Sensing



