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When to Use ML / Autonomy?
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Courtesy Dr. Lukas Mandrake, JPL



ML # Expert Replacement

* Eliminates drudgery
* Operates impossibly fast
* Focuses experts on interesting cases

* Enables larger human feats

Data Science asks: “Would you like to have the same output with
/. the experts or x6 the output with your current experts?”

Courtesy Dr. Lukas Mandrake, JPL






Detecting Features of Interest

0.44 0.38 0.36

(Lungmu Co) (Gozha Co) (Bangdad Co)
Visual Salience: Identified areas of the image that differ from Preliminary Cloud Classification
surrounding areas. results from EO-1

s
TextureCam: Pixel classification for cloud screening, downlink prioritization

[Chien et al. 2016 JAIS; Thompson et al., i-SAIRAS 2012; Wagstaff et al., GRL 2013;
Bekker et al., Astrobiology 2014; Altinok et al. JFR 2015, Thompson et al. TGARS 2011]




Current Model

On-board Processing

Observe Thumbnails, transmit

Science Investigation
Manual Inquiry

Martlan Orblt
N _ Unmapped /
Ops DeC|S|on Support Changing Surface
Host of Scientists, Manual Selection

Courtesy Dr. Lukas Mandrake, JPL



Data=Driven Assistance

Science Support
Data Mining

Martian Orbit
> Unmapped /
changing surface

On- board Smence
Detect Transients,

Ops DeC|S|on Support Summarize Content
Focus of Attention Tools

Courtesy Dr. Lukas Mandrake, JPL



Summarization Technology

Scene-Wide Terrain Landmark
| abels Classification Identification

DIVINES
Batchani®lunes

- Small Craters

Ridges

FargelCraters
Ereshllmpacts
RSIL

Courtesy Dr. Lukas Mandrake, JPL



Landmark Recognition

Drs. Kiri Wagstaff

Techniques Gary Doran
« Salience Estimation Ravi Kiran
« Created by Genetic Algorithm Lukas Mandrake
« Finds optimal blend of leading Norbert Schorghofer
techniques Alice Stanboli
« Landmark Classification Successfully ported to:
- Naive Bayes « PDS/ Planetary Image Atlas

« Support Vector Machines

- Neural Network (deep learning) * IPEX: Atmel 400 MHz

Small Craters 16

Ridges 4
1

Summarization

Landmark Classification




Drs. Alphan Altinok

S@@M@ L@b@ﬂﬁmg Brian Bue

Alice Stanboli
Kiri Wagstaff

“Scalable Scene Analysis” System

« Convolutional Neural Network

* Implemented on PDS Atlas

* Currently trained for Cassini & MSL Images

craters  transients rings surface horizon clouds plume
sky view  starfield body types  multiple objects phases
artifact eclipse haze over exposure noise ripple camera distance
19 categories — 53 labels
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Terrain Classification

Successfully ported to:

TextureCam System « MSL VSTB Flight Testbed
(RAD750) = ~100 HiRise

- Random Forest based pixel classifier images/day

« Extremely fast & parallelizable « EO-1: Mongoose V (M5) processor

« IPEX: Atmel 400 MHz
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ARSI
Cima Lava

KA

IPEX Cube-Sat F‘eature
Identification & Cloud Mask

Fields

Collaboration MLIA & MV

Drs. David Thompson, Alphan Altinok, Brian Bue, Gary Doran, Kiri Wagstaff






AEGIS

Autonomous Exploration for Gathering Increased Science

« Target & Zap Rock
« Manually Scheduled Targets
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« Autonomy selects interesting targets
« Refines targeting automatically

e ~30-100% additional ChemCam science |
targets on drive sols

Drs. Tara Estlin, Dan Gaines, Gary Doran, Raymond Francis, et al.
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Mars Exploration Mars Science
Rover (2009) Laboratory (2012)

i score
/

/ High-resolution

“--—-___ Subframed Pancam

=+ Provides intelligent targeting and data acquisition by:
by — analyzing images of the rover scene

— identifying high-priority science targets (e.g., rocks)

— taking follow-up imaging of these targets with no
ground communication required

[Estlin et al. 2011]






Mission Agility Through Onboard Analysis

Analyze data acquired onboard spacecraft and respond based on analysis

Potential
volatiles on
Ceres

Analysis results
in new imaging
goal(s)

Image Credit: NASA/JPL/Dawn Mission



A s

Characterize one candidateiNEAS _
an imager to address key;Strategic .-
Knowledge Gp |

BDemonstrates IO,WQG@stéeapablIltygf@r;- T -
HEOMD for NEA'detection and .~ 4
reconnaissance .

e Measurements: NEA volume, spin and
- orbital properties, address key physical
and regolith mechanical SKGs.

MSFC/JPL/LaRC/ISC/GSFC/NASA



Imaging Challenges

Reference
stars

b

Target Detection and Approach Medium Field Imaging Close Proximity Imaging
Ephemeris determination Shape, spin, and local environment Local scale morphology, terrain
properties
Target Position Uncertainty Short Flyby Time

(<30 minutes) Data Value Analysis and Sorting

Spacecraft Pointing and Uncertain Environment Short Time at Closest Approach
Camera Limitations (<10 minutes)

Limited Downlink of 1 Kbps



Raw Dafta is Messy
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Rosetta OSIRIS Narrow Angle Camera Detection of 2867 Steins



Raw Dafta is Messy
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Rosetta OSIRIS Narrow Angle Camera Detection of 2867 Steins



Processed Data
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Rosetta OSIRIS Narrow Angle Camera Detection of 2867 Steins



Does Your Target Look “As Expected”?

New Horizons Long Range Reconnaissance Imager Detection of Pluto / Charon






Plumes are Scientifically Exciting

I 3 \%ﬂ
Enceladus Comet 67P o

Plumes gives scientists insights into the volatiles located
throughout the solar system.

Image Credit: NASA, Cassini Mission (Left), ESA, Rosetta Mission (Center), NASA, New Horizons Mission(Right)



Plume Deftection

Hartley 2 (EPOXI)

Edge Detection Convex Hull Thresholding

« Detects bright material beyond the
limb

« Enables monitoring campaigns,

target-relative data acquisition A
« Detects most plumes with zero ,
false positives Enceladus (Cassini)

[Thompson et al., PSS 2012, Wagstaff et al, ApJ 2014]



Comet Tracking

Hartley 2 flyby
Original Sequence

Agile Science Planning

Target and plume detection using MRI-VIS on EPOXI. Tracking Comet Hartley 2



MOSA'C Mars on-site shared analytics information and computing

Understand and maximize the effect of HPSC on Mars exploration

Goals: Research Tasks
1. Distributed computing for Mars « Resource-aware process scheduling across a network of agents
2 Quantify HPSC impact on missions » Model-based flight computing configuration for multi-processor /

multi-robot systems

3. Explore trade Space of HPSC deSIQnS » Optimize routing and storage of information across a network of
agents

» Extend Delay / Disruption tolerant networking for use in
distributed systems

Joshua Vander Hook (347N) 818-354-5455


mailto:hook@jpl.nasa.gov

MOSAIC

1. Develop responsive, model-driven distributed computing stacks

4. PUFFER

@

Tasks

» Benchmark existing flight software on a variety of computing hardware

« Develop analytical models to estimate runtime, data, energy requirements as a function of HPSC config
» Develop distributed process dispatcher (load balancing) based on above models

» Develop distributed data product consensus over DTN

Joshua Vander Hook (347N) 818-354-5455


mailto:hook@jpl.nasa.gov

MOSAIC

1. Develop responsive, model-driven distributed computing stacks

Mars 2020 HPSC CubeSat

Working Example:

+ Can optimally solve Mars 2020 fast-traverse FSW allocation, given HPSC + network configuration
*  Output: minimum-cost allocation (time, power, etc)

See: “Dynamic Shared Computing Resources for Multi-Robot Mars Exploration” i-SAIRAS, 2018

Joshua Vander Hook (347N) 818-354-5455


mailto:hook@jpl.nasa.gov

MOSAIC

2. Understand impact of HPSC configurations and design on missions

Locally shared mapping /
navigation

Tasks

Improved Path Planning
near computing resources

Localization fix by
sharing images

Given HPSC configuration, solve optimal schedule (previous) to get runtime, data, energy requirements

Then, simulate effects on candidate missions

Joshua Vander Hook (347N)

818-354-5455
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MOSAIC

Worked example for Mars 2020 rover mission

65 m/hr 53 m/hr 48 m/hr 41 m/hr 11 m/hr

[1] Data-Driven Surface Traversability Analysis for Mars
2020 Landing Site Selection, Ono et. al.

4 hardware design points, path replayed in 3D

Mars 2020 is reaches its destination 19% sooner driving through Jezero crater when it has
access to three or four cores of an HPSC, either onboard, or nearby with >=1 Mbps data rate.

* Main gains are from better path optimization and better sensing

« Secondary gains from decreased sensing and planning time required

Joshua Vander Hook (347N) 818-354-5455


mailto:hook@jpl.nasa.gov

MOSAIC: Mars On-Site Shared Analytics
Information and Computing

Bandwidth
(Mbps)

What should this hardware look like?

Methodology
» Given prior models, iteratively “sample” HPSC / network config to evaluate metrics

*  Where possible, use “shadow cost” to determine choke point
* (e.g., data transfer, communication bandwidth, onboard storage, or asymptotic runtime)
* Not in isolation! Consider FSW algorithms, models of environment, etc.

Joshua Vander Hook (347N) 818-354-5455
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MOSAIC

3. Explore trade space of networked multi-processor configurations

Optimal Software Process Assignment:

Savings in Mars 2020 planning time (seconds) as
{not possible, Rover, Assisting CPU}

a function of assisting CPU speed

Data Rate Avgtime Plan
Mbps sec Image DEM Analyze Terrain Path Drive

1200 1400

panes awi|

Frequency of assisting CPU (max 1.6 Ghz)

From Mars 2020 analysis:
* Main gains are parallelization (3,4 core is mostly level), even at low (8%) availability

+ Bottleneck is data rate, solution space is “level” w.r.t. compute

Joshua Vander Hook (347N) 818-354-5455


mailto:hook@jpl.nasa.gov

Science Data Prioritization

NAVCAM
~Gbytes/Sol

0O(1000) images/Sol)

Storage
Gbytes ~ Thytes

Downlink

0 - 100MBits/Sol (Fetch rover)

Masahiro Ono (347F) (@plnasa.gov 818-354-0930
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Energy Optimal AutoNav

Preliminary Result i
Energy optimal vs time optimal @i

. Used Jezero Crater's DEM and terrain data

. Simulation based on Fetch Rover design
- Performed in collaboration with Austin Nicholas
- Used Fetch Rover’s solar panel area, battery size, min charge level, nominal driving energy
Used MSL'’s slip curve
Used MER/InSight’s dust accumulation model; assumed 100™ Sol
Sun elevation > 10 deg
M2020 driving speed

Sol 0/ Time 06:00 / Ls=190.9 deg / SolarEl=-15.1 deg / SolarAz= 79.8 deg

MAARS
(Energy-optimal)

Time-optimal

0 300 400
Work by Kyon Otsu Battery Charge [Wh]




New Way of Commanding AutoNav

M2020: Command by waypoints MAARS: Command by costmap

* Uplink waypoint and KOZs only « Uplink global cost-to-go map

o Plan min-time path to Waypoint . ICostlto the stratelgi;gtljal from each cell
Work by Kyon Otsu Min local cost + global cost-to-go



Concurrent Path Planning & Scheduling

Sun simulation =
(Ma§24@y NABA GISS) c =
3 2
| =
‘ = * # Q)
- | ) € Real-time execution
v A on HPSC __

a&n desktqp «,"
e R e
-5000 —-4800 —-4600

X [m]

WOFk 0)Y, Kyon OtSU mmmm— Provided by Austin Nicholas



Preliminary Planning Results
Seasonal variation

. Used Jezero Crater’'s DEM and terrain data
. Simulation based on Fetch Rover design

- Sun elevation > 10 deg
- M2020 driving speed

Sol 0/ Time 06:00

spring
summer -
autumn

winter

0 300 400
Work by Kyon Otsu Battery Charge [Wh]
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Vision-based Classification: Data Collection by Athena

Current sensor

Work by Federico Zechini, Jacek Sawoniewicz, Kyon Otsu



Energy-based Terrain Classification

Clustering by HDP-HSMM algorithm T

.
}.
"y
e

UphviII sand

2nd component of wavelet transform

4

1st component of
wavelet transform

A s

LA 7 Uphill bedrock
Work by Federico Zechini



Single Wheel Testbed

Motor current

mA

Work by Shoya Higa, Jacek Sawoniewicz



IR-based Terrain Classification: Proof-of-concept

* Created two types of sandy area in Mars Yard:
 Compact (~80 kPa) and Soft (~30 kPa)

* Measured temperature and soil pressure at 30 locations

* Temperature was collected from 6:30am to 7 pm

2018—-01—-26—-065441

- 0.61 . 0.54 . 0.31 Uzl)
(2208) (2205) (2196) (219=
- 1.26 - 0.88 - 0.51 - 0.1+
(2234) (2219) (2204) (2189)
«.2:36. =:2.09 - 1.11 - 1.60
(2279) (2268) (2228) (2248)

Work by Yumi Iwashita



Demonstrating HPSC

What compute, memory, power,

We have great new )
g architecture do you need?

capabilities!

Formulatlo 7

\

What new capabilities
will this offer us?

How much compute
can we have?

What cache size,
parallel architecture,
and bit depth do you

We can build great
need?

| space-based compute
engines!

Machm'e'Eea'rnlng J
‘Cgp‘gtglllty ,




Demonstrating HPSC




Unique Engineering Sensors

2L Prassune ol i casidon

.....

Sensors reporting
« Context cameras
| .. * Pressure Grid
N = [R-e -t ‘ - Force/Torque
' ; “ | « Vertical Displacement
* Optical Flow
* IMU (accelerations)
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