RADIOISOTOPE POWER SYSTEMS

Small RPS (<40 \text{W}_e) Mission Architectures

Young H. Lee
Lead, RPS Mission Analysis
Group Supervisor, Advanced Design Engineering (312D)
Jet Propulsion Laboratory, California Institute of Technology

Alex Austin, Brian Bairstow

10/24/2018
Agenda

- Mission Pulls for Small RPS
 - Study Rationale, Objectives, Assumptions and Approach
 - Potential Mission Concepts
 - Conclusions and Considerations
 - Study Participants
Mission Pull for Small RPS

• Rationale
 - The RPS Program is interested in understanding the mission pull for small radioisotope power systems (1 mW$_e$ - 40 W$_e$) in order to identify what future power system developments should be focused on.
 » What types of missions are enabled or enhanced if there was a small RPS?
 » What science questions could we answer?

• Objectives of Study
 - Explore the needs and applications for small spacecraft systems in planetary science
 - Brainstorm what types of mission classes would be possible with small systems that require low average power draw
 - Determine the minimum amount of power required for a deep space small mission with RPS
 - Create a spectrum of potential mission ideas based on available power
Study Assumptions

• RPS assumptions:
 - Expect a power range of milliwatts to 10’s of watts
 - For this study, the type of conversion technology won’t be factored in
 - Small RPS that could generate 40+ W_e are already under consideration for further development
 » Mission concepts that require 40+ W_e won’t be considered for this study
 - Waste heat can be used for thermal control on the spacecraft

• Spacecraft systems assumptions:
 - A “CubeSat” is defined as a spacecraft that can be modeled as a series of 10x10x10 cm cubes (called “U”s), each having a mass of ≤ 2 kg
 » The largest CubeSat is a 12U, measuring 20x20x30 cm with a mass of ~24 kg
 - A “SmallSat” is a spacecraft with a mass ≤ 100 kg that does not fit the CubeSat form factor
 » Spacecraft with a mass greater than 100 kg will not be considered for this study
 - Other types of small missions that require < 40 W_e can be considered
 » Example: small landers, micro-landers
Approach

- One day A-Team session at JPL

- Participants included:
 - Scientists
 - Instrument experts
 - Mission architects
 - CubeSat, SmallSat, small mission (i.e., small lander, micro lander) systems engineers
 - RPS experts

- Study structure:
 - Initial background presentation on small RPS and study goals
 - A group discussion on the current status and future plans for small instruments development
 - A group brainstorming session to identify types of mission classes that could be enabled by small RPS
 - Breakout groups to brainstorm and create mission architectures to populate the power spectrum using identified mission classes
 - Groups reconvene to brief each other and generate a final mission classes power spectrum
Mission Concept Trade Space Identification

- Identified a list of instruments that are available now or are expected to be available in the future for small spacecraft systems, including estimates for masses and powers

- Brainstormed a list of science objectives that could be accomplished with a small RPS mission
 - Questions were organized based on targeted destinations

- Brainstormed mission classes that could be enabled by small RPS
 - Small Landers
 - Small Rovers/Mobility Systems
 - SmallSat Swarms
 - Mother-Daughter craft
Mission Concept Generation

• Study participants were then split into three groups with representatives from the following areas:
 - RPS
 - Scientists
 - Mission Architects
 - Small Mission Systems Engineering
 - Instruments Engineers

• Groups worked from the identified instruments, science objectives, and mission classes to create potential mission concept architectures in more detail

• Individual groups then presented their mission concepts using a concept template to all participants
Concept Template

Short description of mission concept

Science objectives: a list of science questions about the target body or observation

RPS Requirements
- RPS power requirements
- Other requirements on the RPS
 - Volume
 - Mass
 - Thermal output
 - Packaging
 - Lifetime

Concept Summary
- A summary of the mission and flight system
- Include details on the destination

Science Instruments
- List required instruments, including the accommodation requirements for spacecraft and RPS
- List science modes, CONOPs, and measurements taken
- Include other spacecraft requirements needed, when possible (ex. pointing)

Mission Power Requirements
- Required power for mission modes
- Subsystem power requirements
- Other details on power system (i.e. battery sizing)
Pluto Lander

Description: A small, long-lived lander on Pluto.

Science objectives: Ice composition, trace elements, temporal information, volatile measurements

Concept Summary

- Cruise to Pluto with a carrier that orbits for telecom relay (10 year cruise)
- Propulsive landing – 1 km/s (20 - 30 kg propellant)
- Remain on surface for ~10 years
- Waste heat for thermal management
- Lander dry mass: 40 kg

Science Instruments

- Mast camera, GCMS, IR Spectrometer/Raman
 - Per instrument: 2-3 kg, 10 W_e active
 - Minimal survival heating requirements
- Thermal: passive cooling system for instruments off of cold side of RPS
- CONOPS: Camera takes a picture every hour, GCMS daily measurements, IR Spectrometer every hour

RPS Requirements

- Power requirement: 10 W_e EOL
 - Estimated thermal output: 110 W_t
- Lifetime: 20 years
- Mass: 3-4 kg
- Volume: 6 inch diameter, 6 inch tall

Mission Power Requirements

- Power modes: Science -> recharge -> telecom -> recharge
 - Telecom – 4 W_e transmitter
 - Science - 10 W_e per measurement, 1 measurement at a time
Asteroid Beacon

A small system that attaches to asteroids and provides pings for increased tracking accuracy

Science objectives: Origin science of the solar system, planetary defense

Concept Summary
- A small flight system that attaches to near Earth asteroids
- Provides pings for tracking
- A carrier spacecraft (SEP) travels to NEA and drops off small spacecraft
- Attaches with microspine gripper
 - No power required for attachment

Science Instruments
- Transmitter: 10 mW_e
 - Note: DSN can receive signals of 10⁻¹⁹ W
- Always transmitting
- Note that thermal analysis needs to be done to determine if 1 W_t can provide enough survival heat

RPS Requirements
- Power: 40 mW_e
- Thermal output: 1 W_t
- Could use the RHU as a heat source (rated for 10,000 g)
- Volume: 2-3 inch diameter, 4-5 inch tall
- Mass: 0.8 kg

Mission Power Requirements
- Carrier spacecraft has its own power system during cruise
- Constantly transmitting pings
Lunar Geophysical Network

Network of very small packages for seismometry and magnetometry.

Science objectives: Study structure and composition of Lunar interior

Concept Summary
- ~250 kg lander package, 30 kg, 12U payload
- Deployable radiators
- Quantity: 4
- 6 year mission
- Study structure and composition of Lunar interior
- Possible need for network communication relay

Science Instruments
- Seismometer: 0.1 \(W_e \) to 1 \(W_e \)
 - Need robotic arm to deploy on lander
- Magnetometer: <1 \(W_e \)
 - Deployable boom

RPS Requirements
- 10 \(W_e \) end of mission required
- Other requirements on the RPS
 - Volume: < 10x20x30 centimeter (6U)
 - Mass: 4 kg
 - Thermal output: 100 \(W_t \)
 - Packaging: integrated into payload
 - Lifetime: 6 years

Mission Power Requirements
- Continuous Science Recording, no computer: 3 \(W_e \)
- Need power periodically for telecom, once daily
 - X-Band IRIS, ~35 \(W_e \)
- Need approx. 150 Wh backup Li-Ion battery capacity for telecom and other systems in standby
 - Trade: RPS power vs. solar array for batteries
Long-Term Weather Monitoring; Mars

A weather monitoring package that can be deployed on Mars (Venus, Titan).

Science objectives: monitor weather and atmospheric patterns from the surface.

Concept Summary
- Low-power weather monitoring on the surface.
- Weather package operates every 10 seconds for TBD seconds, requires 10 \(\text{mW}_e \)\n- Other instruments require \(\sim 1 \text{ mW}_e \) continuous
- Sends data back to an orbiter, twice a day 1 min each
- Life driven by RPS and instrumentation lifetime
- \(> 10 \) year mission

Science Instruments
- Temperature
- Pressure
- Wind speed
- Weather package for 10 \(\text{mW}_e \)
- Geophone
- Transmitter

RPS Requirements
- 2 to 20 \(\text{mW}_e \)
- \(> 10 \) year mission
- Mass: TBD
- Volume: TBD

Mission Power Requirements
- 1 to 10 \(\text{mW}_e \) for instrumentation depending on duration of readings from weather package
- 1 \(\text{W}_e \) transmitter
Surface Monitoring; Mars

A surface monitoring package that can be deployed on Mars (Venus, Titan).

Science objectives: monitor seismic events and model interior structures from the surface.

Concept Summary
- Low-power continuous seismic monitoring on the surface.
- Sends data back to an orbiter, twice a day 1 min each
- Life driven by RPS and instrumentation lifetime
- > 10 year mission

Science Instruments
- Seismic package (50 mWₑ)
 - Instrument needs to be isothermal
 - Transmitter

RPS Requirements
- 100 mWₑ
- > 10 year mission
- Mass: TBD
- Volume: TBD

Mission Power Requirements
- 50 mWₑ for instrumentation for continuous readings from seismic package
- 1 Wₑ transmitter
Long-Lived Penetrator

Long-lived penetrator targeting outer planet moons, comets, asteroids, etc.

Science objectives: Geophysical assessment and temporal monitoring of distant bodies and near-surface crust characterization.

Concept Summary
- Subsurface penetrator delivered by orbiter spacecraft to distant bodies (e.g. Jovian and Saturnian moons or small bodies)
- Launch 4 or more per body
- Uses RPS to perform low-power operations and charge capacitor for periodic data return
- Requires an orbital asset to relay data

Science Instruments
- Seismometer (0.05 \(W_e\), 100% duty cycle)
- Dialectic Spectrometer (0.01 \(W_e\), low duty cycle)
- Thermal Conductivity Probe (1 \(W_e\), low duty cycle)

Mission Power Requirements
- Seismometer requires 50 \(mW_e\) constant.
- Supercapacitor for higher power modes
 - Telecom, spectrometer, and thermal probe operation

- \(~80\ mW_e\) EOM
- Other requirements on the RPS
 - Diameter < 10 cm, Length < 15 cm
 - Mass < 2 kg
 - \(~3\ W, thermal\)
 - Needs to withstand 10,000 g landing loads
 - 15 year Lifetime

Mini Spelunker Rover

A small rover that is dropped into a cave/lava tube

Science objectives: Map cave interior, cave composition (reflectivity), ice mapping, temperature, pressure, relative humidity

Concept Summary
- Could be dropped by a helicopter or larger rover
- Wheeled mobility system
- About the size of a shoebox
- Explores the cave to map the interior with radar/lidar
- 4 x 6 x 12 in for rover
- Communication back to rover/helicopter with UHF transceiver
- Could have multiple rovers that communicate with each other

Science Instruments
- Radar/Lidar: interior mapping
 - ~100 mW$_e$ radar
 - ~100-500 grams
- Dosimeter: radiation levels, 400 mW$_e$, 20 g
- Temperature, Pressure, Relative Humidity: ~ 50 mW$_e$, 75 g

RPS Requirements
- Power: 1 – 2 W$_e$
- Thermal output: 25 W$_t$
- Could use multiple RHU (10-25) as a heat source
- Volume: 6 inch diameter, 4 – 5 inch tall
- Mass: 1 kg
 - Puffer can accommodate this mass

Mission Power Requirements
- Power modes:
 - Science – 550 mW$_e$
 - Driving – 1 W$_e$
 - Transmitting – 1 W$_e$
Martian Deep Cave Explorer

Science objectives: Explore Martian caves and seek potential habitability

Concept Summary
- One larger rover deploys a network of 16 small rovers into the cave
 - Small rovers are powered by small RPS
 - Small rovers communicate through each other to the large rover, which relays data to an orbiter
 - Small rovers study and map the interior of the cave

Science Instruments
- Temperature and Pressure (1 mW_e)
- Visible near-IR camera with light source and dosimeter (1 mW_e, capacitor charge)
- Mapping Lidar (1 W_e), Penetrometer (1 mW_e)
- IR and passive NMS spectrometer (50 mW_e)
- Magnetometer (50 mW_e)

RPS Requirements
- 1.5 W_e
- Must be magnetically clean
- As low mass as possible for mobility
- Volume: TBD

Mission Power Requirements
- 1.5 W_e
Titan Quadcopters

Titan balloon with RPS-powered quadcopters to fetch samples

Science objectives: Compositional characterization of Titan’s surface, both solid and liquid, across wide geographic ranges

Concept Summary
- Deploy quadcopter “gofer” drones from constant-altitude balloon to investigate surface and return samples for analysis by instruments on balloon
- Multiple drones capable of near-continuous flight
- ~10 kg drone mass

Science Instruments
- Camera for context and surface imaging
- Sample collection device for solid and liquid surface samples

RPS Requirements
- Need ~20 W_e for unlimited mobility and science
- Other requirements on the RPS
 - Volume: disk 30 cm diameter x 10 cm height
 - 3-5 kg
 - Needs to have thermal design compatible with operation in Titan environment
 - Lifetime 15 years (mission)

Mission Power Requirements
- ~15 W_e for flight
- RPS should provide all power – no battery required
Magnetosphere Study Fleet

Science objectives: characterize the variation of the magnetosphere over a year. Potentially understand magnetosphere rotation for Uranus / Neptune.

Concept Summary
- 16 SmallSats deploy from a larger spacecraft to orbit the target destinations
- SmallSats are spin stabilized; no active attitude control

Science Instruments
- Magnetometer (10 mWₑ)
- Electric field (10 mWₑ)
- Particle analyzer (1 Wₑ; 10% duty cycle)
- Plasma wave spectrometer (10 mWₑ)
- Telemetry to mother spacecraft (5 Wₑ; 20% duty cycle)
- *Instruments need to be developed to meet power levels*

RPS Requirements
- 1.5 Wₑ
- 10 - 13 year cruise, 1 - 5 year orbit
- Mass: TBD
- Volume: TBD

Mission Power Requirements
- Excluding main mothership orbiter
- ~1.4 Wₑ for instruments average power
- ~0.1 Wₑ for command data systems
 - This is *challenging*
Long-Period Comet Observer

Most of the time it is on the surface (far from sun); otherwise orbits.

Science objectives: long-term science study of a comet.

- **Concept Summary**
 - Long-lived (~75 year) comet observer, orbiting then package drop (or orbiter lands)
 - Time-capsule concept: uses solar power when close to Sun and RPS when far from Sun
 - Land a seismic package
 - Monitor outgassing, comet dust, radiation environment, charging and magnetic fields, comet jets, chemical evolution
 - Could have battery lifetime issues

- **Science Instruments**
 - Seismic package (1 W_e), Langmuir probe (0.5 W_e)
 - GC-MS mass spec (16 W_e; 0.01 W_e average power)
 - Quartz crystal microbalances (0.05 W_e)
 - Visible camera (1 W_e)
 - Ground penetrating radar (10 W_e; 5 min / week)
 - Millimeter spec (7 W_e; 10 min / 24 hr), Dosimeter (0.05 W_e)

- **RPS Requirements**
 - 15 to 20 W_e (based on a quick ciphering of the other power requirements, should be verified)
 - Use the RPS thermal output to keep flight instruments at required temperatures
 - Mass: TBD
 - Volume: TBD

- **Mission Power Requirements**
 - Keep warm for instrumentation (5 W_t)
 - Orbiter (4 W_e)
 - Telemetry (60 Wh per week)
 - Needs large batteries for trickle charging
 - REP required for orbit maintenance (few watts)
 - Attitude control (15 W_e) (problem, orbiter only)
Mission Concepts Power Spectrum

- The mission concepts are presented here in terms of required electrical power output from the RPS
- Potential mission concepts were identified across the power spectrum

RPS electrical power output required

- Long-Term Weather Monitoring (2 - 20 mW_e)
- Asteroid Beacon (40 mW_e)
- Long-Lived Penetrator (80 mW_e)
- Surface Monitoring, Mars (100 mW_e)
- Martian Deep Cave Explorer (1.2 W_e)
- Mini Spelunker Rover (1.2 W_e)
- Magnetosphere Study Fleet (1.5 W_e)
- Lunar Geophysical Network (10 W_e)
- Pluto Lander (10 W_e)
- Long-Period Comet Observer (15 W_e)
- Titan Quadcopters (20 W_e)
- Lunar Geophysical Network (10 W_e)
- Long-Period Comet Observer (15 W_e)
- Titan Quadcopters (20 W_e)
The mission concepts are presented here in terms of estimated volume available for RPS
- The RPS size estimates were based on GPHS experiences. Future RPS based on other heat sources may differ.

Concepts in grey did not estimate a size during the study, but were estimated by the Mission Analysis team post-study.
The mission concepts are presented here in terms of estimated mass available for RPS.

- The RPS mass estimates were based on GPHS experiences. Future RPS based on other heat sources may differ.

Concepts in grey did not estimate a mass during the study, but were estimated by the Mission Analysis team post-study.
Conclusions

• There are a range of mission concepts that could be enabled by small RPS with a power from 1 mW_e – 40 W_e
 – Concepts from this study were concentrated in range 2 mW_e – 20 W_e
 – Prior 2004 “Enabling Exploration with Small Radioisotope Power Systems*” study mission pull findings covered 51 mission concepts (landers, rovers, sub-satellites, and deployable mini-payloads) in a similar power range from 5 mW_e – 50 W_e

• These missions could enable otherwise impossible mission classes with current/near-term technology

• A widely available small RPS could enable a great number of small science missions with lower cost
 – Leveraging the current rise in technology development for CubeSat/SmallSat components and instruments

• There is a strong trend amongst NASA and industry for small space missions
 – RPS can support and enhance this

* Enabling Exploration with Small Radioisotope Power Systems, NASA Jet Propulsion Laboratory, JPL Pub 04-10, September 2004
Considerations for the RPS Program

- The RPS Program may want to consider development of a new system for small missions
 - A 1 – 5 W$_e$ RPS building block may have a number of uses
 - Modularity of the system could allow for adaptability to a number of mission concepts in the 1 – 20 W$_e$ power requirement range

- Future small RPS systems should accommodate in-situ missions and instruments
 - Many identified mission concepts were on the surface of planetary bodies
 - Some of these destinations have atmospheres that the RPS would need to operate in

- A system that fits within the CubeSat form factor could be useful, but for planetary science missions conforming to this form factor is not a top priority
 - Small satellite missions do not imply that they must be CubeSats
Study Participants

• RPS Program Office
 - Young Lee (Client Lead)
 - Brian Bairstow (RPS Systems)

• A-Team
 - Alex Austin (Study Lead)
 - Jonathan Murphy (Assistant Study Lead)
 - Steve Matousek (Facilitator)
 - Melissa Brown (Logistics)

• Subject Matter Experts
 - Jean-Pierre Fleurial (RPS Power)
 - Terry Hendricks (RPS Power)
 - Aaron Noell (Instruments)
 - Pamela Clark (Instruments)
 - Morgan Cable (Science/Instruments)
 - John Elliott (Mission Architecture)
 - John Brophy (Mission Architecture)
 - Valentinos Constantinou (Data Science)
 - Bill Smythe (Planetary Science)
 - Alan Didion (SmallSat Systems Engineering)
 - Macon Vining (SmallSat Systems Engineering)
 - Kristina Hogstrom (SmallSat Systems Engineering)
 - Colin Sheldon (SmallSat Systems Engineering - APL)
 - Kalind Carpenter (Small Missions, Robots and Instruments)

Note: SMEs are from JPL unless specified
Questions?