Languages, Frameworks, and Tools
for Developing Flight Software

Robert L. Bocchino Jr.

Jet Propulsion Laboratory
California Institute of Technology

© 2018 California Institute of Technology
Government sponsorship acknowledged

Introduction

| work in the Small Scale Flight Software (FSW) Group

FSW development is challenging
— FSW is complex and concurrent
— It must meet rigorous standards of correctness and performance

Small-scale FSW has particular challenges
— Compressed budgets and schedules
— Under-specified and rapidly changing requirements

This talk: Tools that enable FSW development

© 2018 California Institute of Technology
Government sponsorship acknowledged

Introduction

| work in the Small Scale Flight Software (FSW) Group

FSW development is challenging
— FSW is complex and concurrent
— It must meet rigorous standards of correctness and performance

Small-scale FSW has particular challenges
— Compressed budgets and schedules
— Under-specified and rapidly changing requirements

This talk: Tools that enable FSW development

Developing high-quality software

© 2018 California Institute of Technology
Government sponsorship acknowledged

Introduction

| work in the Small Scale Flight Software (FSW) Group

FSW development is challenging
— FSW is complex and concurrent
— It must meet rigorous standards of correctness and performance

Small-scale FSW has particular challenges
— Compressed budgets and schedules
— Under-specified and rapidly changing requirements

This talk: Tools that enable FSW development

Developing high-quality software
Meeting tight constraints on budget and schedule

© 2018 California Institute of Technology
Government sponsorship acknowledged

Topics

F Prime: A framework for developing small-scale FSW
— Provides a modular architecture based on components and ports
— Provides a complete development ecosystem

FPP (F Prime Prime): A modeling language for F Prime

STest: A framework for scenario-based testing
— Raises the level of abstraction in specifying tests
— User describes desired behavior with rules and scenarios
— Framework automatically generates tests

TNet: A language for specifying task networks
— Provides a flexible way to command spacecraft
— Supports FSW development by generating code

© 2018 California Institute of Technology
Government sponsorship acknowledged

Outline

F Prime FSW framework

« FPP modeling language

« STest testing framework

« TNet language for autonomy
« Future Work

 (Conclusion

© 2018 California Institute of Technology
Government sponsorship acknowledged

The F Prime FSW Framework

* Free and open-source; developed at JPL

« Comprises several elements

1.

ok~ D

A modular architecture based on components and ports
A C++ framework providing core capabilities

Tools for specifying models and generating code

A collection of ready-to use components

Tools for unit and integration testing

* Runs on a variety of platforms

https://github.com/nasa/fprime

© 2018 California Institute of Technology
Government sponsorship acknowledged

F Prime: Architecture

« Key concepts
— Component: A unit of FSW function (like a C++ class)
— Port: A point of connection between component instances
— Topology: A directed graph of instances and connections

« Component instances
— Communicate only through ports
— Have no compile-time dependencies on other components

« Port connections
— Are typed and statically specified
— May be synchronous or asynchronous

© 2018 California Institute of Technology
Government sponsorship acknowledged

F Prime: Architecture

« Key concepts
— Component: A unit of FSW function (like a C++ class)
— Port: A point of connection between component instances
— Topology: A directed graph of instances and connections

« Component instances
— Communicate only through ports
— Have no compile-time dependencies on other components

« Port connections
— Are typed and statically specified
— May be synchronous or asynchronous

Provides structure to FSW applications

© 2018 California Institute of Technology
Government sponsorship acknowledged

F Prime: Architecture

« Key concepts
— Component: A unit of FSW function (like a C++ class)
— Port: A point of connection between component instances
— Topology: A directed graph of instances and connections

« Component instances
— Communicate only through ports
— Have no compile-time dependencies on other components

« Port connections
— Are typed and statically specified
— May be synchronous or asynchronous

Provides structure to FSW applications
Enables automatic checking of correctness properties

© 2018 California Institute of Technology
Government sponsorship acknowledged

F Prime: Architecture

« Key concepts
— Component: A unit of FSW function (like a C++ class)
— Port: A point of connection between component instances
— Topology: A directed graph of instances and connections

« Component instances
— Communicate only through ports
— Have no compile-time dependencies on other components

« Port connections
— Are typed and statically specified
— May be synchronous or asynchronous

Provides structure to FSW applications
Enables automatic checking of correctness properties
Enhances reusability of FSW components

© 2018 California Institute of Technology
Government sponsorship acknowledged

F Prime: C++ Framework

input — |} virtual inputHandler(...) = 0 —| |— output

v

inputHandler = {

}};vokeOutput(...) —

© 2018 California Institute of Technology
Government sponsorship acknowledged

F Prime: C++ Framework

input —{ }— virtual inputHandler(...) = 0

/

— output

v

inputHandler = {

}};vokeOutput(...) —

© 2018 California Institute of Technology
Government sponsorship acknowledged

F Prime auto-generates
a C++ base class from
a high-level specification

F Prime: C++ Framework

F Prime auto-generates

input —{ }— virtual inputHandler(...) = 0

a C++ base class from
/ a high-level specification

— output

v

inputHandler = {

}};vokeOutput(...) —

Developers fill in

handler functions with
/ application-specific code

© 2018 California Institute of Technology
Government sponsorship acknowledged

F Prime: Modeling

Component 1

Component 2

* F Prime developers write high-level models

— Define components and ports
— Specify connections in a topology

— Define flight-ground interface (commands, events)

* F Prime tools generate
— Component base classes
— Code for connecting the ports
— Command and event dictionaries

© 2018 California Institute of Technology
Government sponsorship acknowledged

F Prime: Testing

Testing is both labor-intensive and critical

F Prime provides robust support for testing

Unit tests of components
— F Prime automatically generates a tester base class
— It is the mirror image of the component base class
— Tests go in a class derived from the tester base

Integration tests of deployments (executable builds)
— F Prime provides a complete ground data system
— ltincludes a GUI for interactive tests
— It also includes a python API for scripted tests

© 2018 California Institute of Technology
Government sponsorship acknowledged

Experience with F Prime

« We have used F Prime on several space missions

ISS RapidScat scatterometer (flew)

ASTERIA CubeSat space telescope (flying now)

Mars Helicopter (in development)

Lunar Flashlight CubeSat (in development)

Near Earth Asteroid (NEA) Scout CubeSat (in development)

« We have used F Prime for research and education
— JPL R&D project on autonomous FSW

Collaborations with CMU and other universities

* F Prime reduces the cost of developing FSW

Enables sharing and reuse among projects
Lets developers focus on mission-specific code

© 2018 California Institute of Technology
Government sponsorship acknowledged

10

ASTERIA

© 2018 California Institute of Technology
Government sponsorship acknowledged

11

Mars Helicopter

© 2018 California Institute of Technology
Government sponsorship acknowledged

12

Outline

F Prime FSW framework

 FPP modeling language

« STest testing framework

« TNet language for autonomy
« Future Work

 (Conclusion

© 2018 California Institute of Technology
Government sponsorship acknowledged

13

FPP (F Prime Prime)

« A modeling language and visualization tool for F Prime

 Intended to replace our current modeling approach
— Plugin for a commercial tool called MagicDraw
— Handwritten XML

« Goals
— Free and open source
— Simple and easy to use
— Well integrated with the rest of F Prime

« Developed in collaboration with CMU MSE program

« Uses Acme Studio for architecture checking

© 2018 California Institute of Technology
Government sponsorship acknowledged

14

FPP: Modeling Ports

namespace Fw
porttype Cmd ({
comment = "Command port"

arg opcode : FwOpcodeType {
comment = "Command opcode"

}

arg segNum : U32 {
comment = "Command sequence number"

}

arg args : CmdArgBuffer {
pass_by = reference
comment = "Buffer containing arguments"

}

© 2018 California Institute of Technology
Government sponsorship acknowledged

15

FPP: Modeling Components

namespace SVC
component CmdDispatcher {
kind = active
comment = "A component for dispatching commands"

port cmdOut : Fw.Cmd {

direction = out
number = NumCmdPorts
comment = "Dispatches commands"

}

© 2018 California Institute of Technology
Government sponsorship acknowledged

16

FPP: Modeling Topologies

namespace Ref

instance cmdDisp : Svc.CmdDispatcher {
base_id = 0x100
base_id_window = 0x100

}

instance cmdSeqg : Svc.CmdSequencer {
base_id = 0x200
base_id_window = 0x100

}

topology CommandResponse {

cmdSeqg.cmdResponseOut —> cmdDisp.cmdResponseln

© 2018 California Institute of Technology
Government sponsorship acknowledged

17

FPP Visualizer

K
FPrime Visual

v Function View
Ref.REFLogger
Ref.REFTelemetry
Ref.REFTime

Ref.REFCommanding

v InstanceCentric View

Ref.SG1
Ref.SG2
Ref.SG3
Ref.SG4
Ref.SG5
Ref.textLogger
Ref.eventLogger
Ref.chanTIm
Ref.linuxTime
Ref.cmdDisp

v Component View

Ref.PingReceiver

DAf CimnnalMNan

cOoBC M@

Ref.REFLogger X

© 2018 California Institute of Technology
Government sponsorship acknowledged

fprime-visual

AcmeRuleChecke v

Ret.SG1

Ref.SG2

dagre v é;
LS
Ret.SG3 Ref.SG4
¥ W)
f ‘)
\\ \‘ /’//
| \

ool yaw
N § \ fo
— \'\ //"'

e S
| \~\'+//' /

\ Het eventl cgger 7

Ref.SGS

18

Outline

F Prime FSW framework

« FPP modeling language

« STest testing framework

« TNet language for autonomy
* Future Work

« (Conclusion

© 2018 California Institute of Technology
Government sponsorship acknowledged

19

The STest Testing Framework

* A C++ framework for writing tests

« Approach
1. The developer uses rules to describe desired system behavior
2. The developer uses rules to write scenarios
3. The framework uses scenarios to generate tests

« Advantages
— Factors tests into small reusable pieces
— Separates system behavior from test construction
— Enables generation of many tests (potentially millions)

© 2018 California Institute of Technology
Government sponsorship acknowledged

20

STest: Rules

« Arule R has two parts:
1. The precondition: When to apply R
2. The action: What to do and what to check when applying R

« Example: Allocating a buffer from a memory manager
— Precondition: A buffer is available and s is a legal buffer size

— Action:
» Request a buffer of size s
» Check that the action succeeded
» Check that the action produced a buffer of size s

« We can write similar rules for
— Successful deallocation
— Error cases

© 2018 California Institute of Technology
Government sponsorship acknowledged

21

STest: Scenarios

S1.
S2.
S3.

A scenario is a recipe for using rules to construct tests

Example scenarios

A fixed sequence of rules Ry, ..., R,
All valid random sequences of a fixed set of rules {R,}
All stepwise interleavings of a fixed set of scenarios {S;}

STest provides several operations for constructing scenarios

Nondeterministic choice
Repetition

Conditional execution
Interleaving

One scenario can automatically generate millions of tests

© 2018 California Institute of Technology
Government sponsorship acknowledged

22

STest: Tool Integration

* Kkontest
— An experimental tool developed at JPL

— Uses concolic testing to generate test inputs
» Run with input /; and collect constraints
» Solve constraints to generate inputs /4,...,/,
 Repeatforly,..., 1,

— Extends klee; operates on LLVM bitcode
— Integrated with STest for picking test inputs

¢ Spin
— A widely used explicit-state model checker
— Remembers and systematically explores system states
— Integrated with STest for picking rules to apply

© 2018 California Institute of Technology
Government sponsorship acknowledged

23

Experience with STest

« We have applied STest and kontest to
— Several F Prime components
— A software simulation for an attitude control system
— The file system for the Curiosity Mars rover

« We found tricky corner-case bugs in
— The Curiosity file system
— The ASTERIA Communication component

« Challenging to find with traditional testing

© 2018 California Institute of Technology
Government sponsorship acknowledged

24

Outline

F Prime FSW framework

« FPP modeling language

« STest testing framework

+ TNet language for autonomy
* Future Work

« (Conclusion

© 2018 California Institute of Technology
Government sponsorship acknowledged

25

Task Networks

A task network is a way of commanding a spacecraft

It divides spacecraft activity into tasks consisting of
— Conditions on system state
— Commands to perform
— Impacts to timelines (updates to modeled state variables)

Example: Taking an image
— Precondition: Imager is on
— Command: Take the image
— Impact: Add one to count of images taken

Supports on-board autonomous behavior

© 2018 California Institute of Technology
Government sponsorship acknowledged

26

The TNet Language

A statically typed domain-specific language (DSL)
— Uses structural typing
— Supports aggregate values: structures, arrays, ranges, sets

« Goals
1. Provide a convenient way to specify task networks

2. Generate task networks to submit to an on-board planner
3. Generate C++ code for inclusion in FSW

« C++ code generation includes
— Representations of state data structures
— Code for instantiating templates (tasks with unbound parameters)

© 2018 California Institute of Technology
Government sponsorship acknowledged

27

TNet: Status

Language Feature Design Implementation
Types and constants []]
States and timelines B

Task definitions
Task templates
Instantiating task templates

Development started in May 2018

© 2018 California Institute of Technology
Government sponsorship acknowledged

TNet: Types and Constants

module GNC {

module Position {

type t = { x : , YO , Z }
constant min = { x = -1, yv = -1, z = -1 }
constant max = { x =1, vy =1, z =11} : t

© 2018 California Institute of Technology
Government sponsorship acknowledged

29

TNet: Enumerations

module GNC {

enum BodyVector {

SOLAR_PANEL = 1

CAMERA_BORESIGHT = 2

© 2018 California Institute of Technology
Government sponsorship acknowledged

30

TNet: State

module GNC {

module State {

type t = {
position : Position.t

bodyVector : BodyVector

state s : t = {
position = { x =0, y =0, z =0 }
bodyVector = BodyVector.SOLAR_PANEL

© 2018 California Institute of Technology
Government sponsorship acknowledged

31

TNet: Timelines

module GNC {

module State {

timeline s.position in Position.min..Position.max

timeline s.bodyVector

© 2018 California Institute of Technology
Government sponsorship acknowledged

32

Outline

F Prime FSW framework

« FPP modeling language

« STest testing framework

« TNet language for autonomy
* Future Work

« (Conclusion

© 2018 California Institute of Technology
Government sponsorship acknowledged

33

Future Work

. FPP

— Current tools are alpha versions
— Make the tools more robust and feature complete
— Add more analysis capabilities

« STest

— Use Promela (Spin modeling language) to write scenarios
— Develop a general language for describing scenarios

e TNet

— Continue to develop the language
— Integrate with extended ASTERIA mission
— Integrate with Autonomy research

© 2018 California Institute of Technology
Government sponsorship acknowledged

34

Outline

F Prime FSW framework

« FPP modeling language

« STest testing framework

« TNet language for autonomy
* Future Work

« Conclusion

© 2018 California Institute of Technology
Government sponsorship acknowledged

35

Conclusion

« FSW development is challenging

« We are developing several tools that can help
— F Prime FSW framework
— FPP modeling language
— STest testing framework
— TNet language for autonomy

« We have several directions for future work

© 2018 California Institute of Technology
Government sponsorship acknowledged

36

