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Coronal Mass Ejections (CMES)
and Interplanetary CMEs(ICMES):
Solar Maximum

We distinguish between CMEs and ICMEs because what is

observed at the Sun may not be exactly the same thing detected at
1 AU.

Typically the outer loops and filaments are not detected at 1 AU.

The magnetic cloud magnetic fields may be altered during
passage from the Sun to the Earth?



A CME at the Sun
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If the magnetic fields within magnetic clouds (MCs) are southward, they cause magnetic storms.

Intense solar flares are always accompanied with the release of CMESs. Very intense magnetic
storms are always associated with intense flares.

Filaments can be geoeffective by causing solar wind ram pressure effects. However
they are not detected too often at 1 AU. What happens to them? Solar Probe and Solar
Orbiter may be able to answer this question. Data analysis.



A Second Region of Intense Magnetic Field is the Sheath:
Interplanetary Space
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If the sheath magnetic field is southward, it will cause a magnetic storm. Since this is
compressed slow solar wind plasma (a different origin than MC plasma), it is high beta and

the storm may have different properties than that of MC-caused events.
Approximately half of magnetic storms with intensities Dst < -100 nT are caused by sheath

fields. Forecasting these events are more challenging than MC storms.



Magnetic Storms at Earth are Caused by IMF Bs and Magnetic Reconnection
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In this case the loop and filament were not geoeffective.



Earth's Magnetosphere

Sun

IMF: Interplanetary
Magnetic Field

B,: Southward
component of IMF

The cause of the solar wind energy transfer from the solar wind to the magnetosphere
during magnetic storms is magnetic reconnection (Dungey, 1961).

Echer et al. (2008) has shown that all 90 storms with Dst < -100 nT during SC 23 were caused
by southward magnetic fields (no IMF By magnetic storms).



What Are the Fundamental Problems With
ICME Magnetic Storm Forecasting?

The first main problem is predicting the IMF Bz at 1 AU.
What is the CME magnetic field near the Sun (we do not
know)? Can the CME magnetic fields be distorted during
transit from the Sun to 1 AU? Perhaps data from the Parker
Solar Probe, Solar Orbiter and ACE together can answer that
question.

A second fundamental problem is with the accuracy of the
codes in predicting the arrival time and features of the shock,
sheath and ICME at 1AU. Dedicated NASA and NSF
funding could aid in improving these data analyses and
codes. So far there has NOT BEEN ANY emphasis placed
on CODE VERIFICATION. It is known that during (solar)
active periods, the predicted arrival times of an ICME can be
off by days. No-one can predict the MC magnetic field yet.



CIR-Storms and High Intensity Long
Duration Continuous AE Activity
(HILDCAAS): Declining Phase
Geomagnetic Activity



A Second Type of Magnetic Storm: CIRs
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SSC = storm sudden commencement (remove from usage)

SI* = sudden impulse

CIR = corotating interaction region

Initial phase = positive Dst interval (remove from usage)

Main phase = negative Dst interval from 0 to peak value
HILDCAA = High Intensity Long Duration Continuous AE Activity



During the Declining Phase of the Solar Cycle There Are Large
Polar Coronal Holes

Coronal hole (CH)

The~27 day recurrent geomagnetic activity pattern was originally discovered in 1905
(Maunder 1905, 1906; Chree, 1911, Bartels, 1934)



High Speed Solar Wind With Vsw ~750 to 800 km/s Emanate from CHs
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CIR Induced Storms Typically Don’t Have SI*s and Have Irregularly
Shaped Main Phases
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The irregularity of the profile of the storm main phase is due to the fluctuations in the IMF Bz component

Can one predict the variability of the IMF Bz in CIRs? This will be more difficult than predicting Bz
for ICMEs. First of all what are the fluctuations, shock compressed interplanetary Alfven waves? Can
one predict the properties of the upstream waves?

Knowing the location of a stable coronal hole, CIR generation and the propagation to 1 AU should be feasible.
However again, little emphasis has been placed on code verification. Funding (and interplanetary observations)
may help improve current capability.



HILDCAAs Are Caused by High Speed Stream Southward
Magnetic Field Component of Alfvén Waves
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With IMF Bg increases, AE increases and Dst decreases
Averaged over time, HILDAASs pump more energy into the magnetosphere
during the declining phase than ICMEs during solar maximum.

The Alfvénic fluctuations may be impossible to predict especially if some
of the waves are generated near 1 AU upstream of the Earth.



Relativisitic Magnetospheric Electrons Are Accelerated/Created

During HILDCAAS
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The accepted scenario is that substorm and injection events within HILDCAAs cause the convection of anisotropic
plasmasheet electrons into the nightside magnetosphere. The anisotropic electrons generate electromagnetic
chorus. The chorus accelerates the ~100 keV substorm electrons to ~0.6 MeV and the further bootstrapping

OcCcurs.

How high can this energy get, say with 1973-1975 type HILDCAAS?

Can the above relationship be used to predict the occurrence of relativistic electrons?



Interplanetary Shocks



Multiple Interplanetary Fast Forward Shocks Pump Up the Interplanetary
Magnetic Field Magnitude
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Active Regions (ARs) on the Sun will have multiple flaring and multiple CME releases. The

multiple shocks can pump up the interplanetary magnetic field to magnitudes higher than
that of the MC.

The high densities behind interplanetary shocks compress the Earth’s magnetosphere. These
events are detected on the ground as Sudden Impulses or SI*s. In the above example, the
three shocks cause SlI*s of ~15, 35 and 40 nT intensities. These are seen in the Dst/SYM-H
trace.

Modeling of ICME propagation during AR flaring has so far not been successful. Data from
Solar Orbiter and Parker Solar Probe will help.



Discovery of Shock Acceleration of ~ MeV Protons
(in the Outer Heliosphere)
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The fast reverse shocks were more efficient in accelerating energetic particles



Can One Accurately Forecast Solar Flare Particle
Fluences Today? If Not, What is Needed?

The biggest flare particle event was probably the August
1972 event. There was no magnetic storm caused by the MC.
The biggest magnetic storm is the Carrington 1859 event.
There is very little evidence of an energetic particle event.
Thus the magnetic storm part of space weather is distinct
from solar flare energetics.

The consensus is that the particle fluence depends on the
upstream seed particles, the shock normal angle and the
Mach number. Tsurutani and Lakhina (2014) have
speculated that Mach nos. as large as 45 are possible*. Why
haven’t such large events been detected? The Parker Solar
Probe and Solar Orbiter should be able to answer this
question. Nonlinear dissipation effects should be studied.

*The largest detected is M = 28 (Riley et al ApJ, 819, 57, 2016)



Interplanetary Shock Powering A Dayside Aurora Event
(and Triggering a Supersubstorm)
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The energy for the dayside aurora must be primarily from direct solar wind ram energy



Interplanetary Shocks Create Dayside Aurora AND Trigger
Nightside Substorms

Dayside aurora: shock compression,
involving nonadiabatic processes

Shock occurs here
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For the nightside supersubstorms where does the energy come from?
Recently stored tail energy? Long term tail energy? Solar wind ram energy? All three?



There Are Several Different Mechanisms for the
Dayside Shock-Associated Auroras

1) Betatron acceleration (compression) of preexisting 10-100 keV electrons
and protons, temperature instabilities and wave-particle interactions leading to
diffuse aurora.

2) Generation of Alfvén waves with ionospheric damping (Haerendel, 1994)
3) Field-aligned current generation.

Are double layers and monoenergetic electrons produced on the dayside during these
events? If so this would be a 4" mechanism.

What are the relative energy inputs for the 4 above mechanisms?

Can ICON, GOLD and SWARM answer these questions?



Shock formation of a new radiation belt

INJECTION OF ~IS MeV ELECTRONS AT L=26
1 T 1 I

105 )
T Drift echos
il ORBIT 587
g 103
N
n 10 MW
: e i
S _ e>|3 MeV
10! VWW”W
100
1071
SEC 07580 08780 09980 11180 12380 13580 14780
L 5.25 4.82 4.32 3.76 3.12 2.40 1.51
B/BO  1.09 1.11 1.14 1.18 1.26 1.42 1.43

Blake et al. 1992



Energetic Electron, Electric and Magnetic Fields
24 March [99]
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What happens to the flux and spectra with larger shock events? How much
larger can the magnetospheric electric field caused by the shock get?



The Second Largest SI* in Recorded History: Note
Importance of 1s Data
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APy = MsNVs2 — MgNV/2

Unfortunately SW data not available. If V, jumps from 400 km/s to 1600 km/s, APx/Pg = 63 X!



Solar Flare Photons

Severe 1onospheric disturbances



The Largest Solar EUV Flare in Recorded History: 28 October, 2003
(SOHO SEM 26-34 nm EUV)
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The November 4 flare was X-28, the largest in NOAA recorded history.

In EUV flux the October 28 flare was larger by a factor of two. Is it possible
that Oct 28 is the largest in X-rays as well? Thomson et al. (2004) have derived
a value of X45.



Delta-TEC from Ground GPS Receivers for the October 28, 2003
Solar Flare

Double—differenced verticalized TEC: 2003-10-28 — 2003-10-27, 11:08:00 — 11:00:00

GRL 2005 N\ |
Subsolar point

GPS is a relatively new technique for ionospheric physics. Ground based receiver
networks and satellite constellations (COSMIC 1 and 2) can be used to help data analysis



Oct 28, 2003

NKLG GPS TEC 2003-10-28 (with 2003-10-27 subtracted),
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Why does the ionospheric TEC effect last so long? What is the upper limit of
flare intensities? Are their ionospheric effects different?



Why Does the lonospheric TEC Last So Long After the Flare is Over?
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Do the X-ray and EUV spectra of solar flares vary and why? Spectral variations will have
profound influence on ionospheric effects.

Can GOLD, ICON and SWARM identify the ionization distribution in the dayside

F region due to solar flares, giving more detailed information of TEC enhancement durations?
Can this information be used to work backwards and get the flare spectrum?



Storm-Time Prompt Penetrating Electric Fields
(PPEFs): lonospheric Effects

For substorms: Obayashi,1967; Nishida, 1968; Kelley et al. 1979, 2003.
In the last 10 years lots of work done on PPEFs during magnetic storms.



Equatorial lonospheric Anomalies (EI1As): Normally Located at + 10°
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EIAS: Namba and Maeda, 1939, Appleton,1946



Ground-Based GPS Receivers Can Be Used to Get lonospheric
TEC Along Ray Path
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PPEF Effects on Dayside lonosphere During Halloween 30 October Superstorm
Called “Dayside Superfountain Effect”
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The dayside superfountain effect is present during almost all large magnetic storms.
However the magnitude of the effect varies. Why?



Mechanism for Uplift and Higher Latitudes of EIAs
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Although the PPEF lifts the F-Region ionosphere upward and
to higher latitudes, why does TEC increase?



The Answer is that When The lonospheric Plasma is at High Altitudes
The Recombination Time is Longer, Thus the Plasma is Stable
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Solar photoionization creates a new ionosphere at lower altitudes



PPEFs Have Global Consequences

Tsurutani et al. 2003, 2008; Mannucci et al. 2005, 2008

PPEFs Cause the Dayside Superfountain effect. There is nightside
ionospheric suppression as well (due to downward convection and recombination).

This simple schematic divides day and night. What is the variation of the PPEF magnitude
with LT? Again, ICON, GOLD and SWARM could be used to answer this question.



The September 1-2, 1859 Carrington
Superstorm:

lonospheric Effects



The R. Carrington Hand-Drawing of the Solar Active Region (AR) during
the Carrington Optical Flare Event of Sept 1, 1859

Carrington, 1859

The AR caused multiple flaring over a week duration



The Carrington Magnetic Storm of 1-2 September 1859

1859 Bombay Magnetic Storm
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This is the biggest magnetic storm in recorded history.

How much larger can magnetic storms become? Partially
answered In Tsurutani and Lakhina, 2014.

Why is the recovery phase of such short duration? A possible
answer is provided in Tsurutani et al. 2018.



From a plasmapause location of L=1.3 (auroral data: Kimball, 1960), we

can estimate the magnetospheric electric field.

The electric potential (Volland, 1973; Stern, 1975; Nishida, 1978) for

charged particles is:

Where and are radial distance and azimuthal angle measured

counterclockwise from solar direction (M - dipole moment - particle

charge and magnetic moment)

Deriveda: DSt ~-1760 nT and a E,, ~ 20 mV/m



What Was The Dayside Superfountain Effect During
The Carrington Storm?

Huba et al. 2002 SAMI-2 code
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Although the Daytime Superfountain Effect will convect oxygen

ions up to satellite altitudes, what about neutrals (through ion-neutral

collisions)? This problem has not been solved yet. Gravity waves will be launched by
this process.



At altitudes of ~700 to 1000 km the O* densities
will be 300 X quiet-time neutral densities.

These much higher densities will increase drag
substantially for LEO satellites.

But again, how much will neutral densities
Increase? What will the total ion plus neutral
densities become? GOLD, ICON, SWARM



HILDCAA ~10-100 keV Electron Precipitation
Effects
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Polar Cap Ozone Destruction
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If the NOX is entrained in a polar vortex, the molecules will diffuse in altitude
downward with the destruction of ozone months later.



Thank You for Your Attention

bruce.tsurutani@jpl.nasa.gov






Particle precipitation in

Particle a_cceleration polar cap regions: PCAs, radio blackouts
0to 1 hr at flare site ; »
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Particle acceleration
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900 Ulysses South Solar Pole Pass
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High speed stream

HK Vg, = 750 km/s

IMF Bz fluctuations

Large AE
response

Very weak Dst
response
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2-6 MeV electron peak occurrence

occurs in solar cycle declining phase when

HSSs dominate

Normalized flux
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Scenario: 1) ~30 keV electrons injected by B, of interplanetary
Alfvén waves, 2) chorus generated by anisotropic electrons,
3) ~2.5 MeV relativistic electrons accelerated by chorus

Electrons
(30keV)

Electrons
(2.5Mev)

VLF wave
(1-10kHz)

Kasahara et al., 2006
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1990 / 10
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~ 9 day event



NO Radiance and Temperature HIDCAA electron
precipitation causes
NOx formation.
Polar vortex causes
entrainment of

. . catalytic molecules
60 80 which lead to the

Aug 1 Aug 31 destruction of ozone
NO Radiance

Altitude (km)

Kozyra et al., AGU, 2006



~7 and 9 day periodicities in Vsw, Kp and atmospheric density
(at CHAMP altitude3—4(30 km)

F10.7

Solar wind speed

Kp
%
Thermospheric density TE’. e
z f ~ +20-30% effect
8 o1

O | | | =
2 579 13 27
Period (day)
Figure 2. Lomb-Scargle spectral amplitudes of the time

series shown in Figure 1. The dashed lines denote the 95%
significance level.

Thayer et al, JGR 2008; Lei et al GRL 2008



Radiation highest in auroral zone

Zonal Flux, W/m2
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Fast ICMEs Will Create An Upstream Shock and Sheath

SHOCK

Sheaths are another region of intense
Interplanetary magnetic fields

ICME/DRIVER GAS
__ SHEATH
(shocked slow solar wind)

Shock compression can raise magnetic field magnitudes (and plasma
densities) by a maximum of 4 times (Kennel et al. AGU mono., 1985).

If both the MC and sheath fields are southward, a double storm occurs at Earth.
However the storms will have different properties.



A Schematic of Interplanetary Phenomena and Geomagnetic Activity

Heliospheric Current Sheet: HCS
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Two High Speed Streams (HSSs) Per Solar Rotation during 1973-5

SOLAR WIND — MAGNETIC STORM CORRELATIONS
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In this extreme case the two HSSs came from the northern and southern polar cap coronal
holes (CHSs).

The related geomagnetivity does not seem to depend on the location of the CHs? However see
solar minimum (discussed later)



HILDCAASs During An Exception Period: 1973-1975
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Because of HILDCAAs created by Alfvén waves present in HSSs, the
overall energy input into the magnetosphere is higher during the declining phase
than during solar maximum



|ICME Shock Magnetospheric Particle
Acceleration

Solar wind energy transfer directly to the magnetosphere
(and also release of stored energy)



Modeling to Simulate Observations

Total Proton Flux

20 30
Energy (MeV)
Northward IMF; Solar proton flux ~ W

Total Proton Flux T'otal Proton Flux

60
Sncrgy (MeV)
MHD fields; Solar proton flux ~ W*

From Hudson et al.,1997. Panel a) northward IMF, b) southward IMF and Vsw = 1000
km/s, ¢) Southward IMF, Vsw = 1400 km/s and W-%3 solar proton power law

weighting.



Solar Minimum: Extreme
Geomagnetic Quiet



Although the Official Sunspot Minimum was in 2008, There
was an Extremely Low Geomagnetic Activity Ap Index Closer
to 2010

Official Sunspot Min: 2008
Hathaway, Sol Phys, 2010
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An alltime minimum in Ap indices

What is the cause of this extremely low geomagnetic activity?
The question is partially answered by the low Vsw and B characteristics, but what causes
those low solar wind values?



The Same Geomagnetic Activity Effects and Interplanetary
Phenomena Are Noted in the Previous Solar Minimum With
A Similar Lag from the Sunspot Minimum
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The minima in geomagnetic activity (MGASs) are delayed
from the sunspot minima by 6 to 12 months



HSSs are detected but peak V, never reaches 750-800 km/s
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The interplanetary Alfvénic wave intensities in 2009 was much
less than that in 2008
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Latitude
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NSO Coronal Maps: Nov 2009

NSO/VSM (Preliminary) Solar Wind Source Map (Carrington Rotation: 2089)
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The Same High Speed Stream Shown Earlier: 1998
Peak V,, ~750 km/s
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At the “wings” of HSSs, the Alfven wave amplitudes taper off



Isolated midlatitude
coronal hole

Nov 2009

] V,,, = 750-800 km/s
Blowup of isolated

coronal hole
V,, = 450-600 km/s
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Note effects of
superradial expansion:
lower peak speeds and
lower Alfvén wave
amplitudes

AG 2011



Formation of an Enhanced Ring Current
(Magnetic Storm)

.. Trajectory of
trapped particle

(pitch angle of helical trajectory = 80°)

Drift of
electrons

Drift of %
protons

The decrease of the horizontal component of the Earth’s surface field (Dst or SYM-H) is caused by the diamagnetic ring
current of energetic particles, which is intensified during storms. Dessler and Parker (1959) and Sckopke (1966) showed
that the total field decrease was linearly proportional to the total particle energy.

What are the contributions of the magnetopause and tail currents to Dst? This is still being debated. This might vary from
storm to storm, so there is not one “right” answer.



Coronal Hole High Speed Solar Wind
Streams: Declining Phase of Solar Cycle



HILDCAAS, Chorus and Relativistic Electron Acceleration

Relativistic ~400 keV electrons

(mV/mJ;‘ o®

Lshell
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Tsurutani et al. 2006 July

Scenario: 1) ~10-100 keV electrons injected by B, of interplanetary
Alfvén waves, 2) chorus generated by anisotropic electrons,
3) ~400 keV relativistic electrons accelerated by chorus.

How high can the energy go by the bootstrap mechanism?



Alfvén Wave Bs in HSSs Cause Small Intensity and Shallow Injections of
Plasma (L > 4)
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The inject plasmasheet particles are of relatively low ~10-100 keV energies and
the energy deposition is mostly in the auroral zones.

There is also substantial energy deposition over the polar caps. Why?



Relativistic Electron Acceleration Occurs in the Solar Cycle Declining
Phase When there are Coronal Holes and High Speed Streams

Declining phase
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What is the electron spectra and spectral changes when these
events occur?



SUMMARY: ICMEs

Intense IMF Bs (sheath or magnetic cloud) will generate major
magnetic storms (by magnetic reconnection). Auroral energy
deposition will descend to middle latitudes.

Shock impingement onto the magnetosphere can cause
significant energy input (and also release of stored energy) into

the magnetosphere.

Magnetic storm PPEFs cause dayside TEC enhancement and
the transport of ionospheric plasma from the equator to middle

latitudes.



Summary: High Speed Streams

CIRs typically create only weak magnetic storms (Dst > -100
nT).

Bs from interplanetary Alfven waves causes the
continuous/sporadic injection of plasmasheet plasma causing
long duration CIR storm “recovery phases”. Relativistic
electrons are accelerated in this process.

Auroral zone NOx entrained by a polar vortex may diffuse
downward to lower altitudes, leading to ozone depletion.

Strong atmospheric heating is associated with HSSs.



SUMMARY: SOLAR MINIMUM

« An all-time Ap minimum (2009) was detected ~6 months to 1
year after the sunspot minimum of SC23 (2008).

» The cause was the disappearance of equatorial coronal holes
and appearance of midlatitude coronal holes on the Sun. The
high speed streams coming from the latter holes had weaker
V,, and IMF Bs at the Earth’s latitude.



Emitted NO and CO, Power
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Figure 1. (a) Time series of daily global radiated power
from the thermosphere (100-200 km) from NO and CO,
from January 2002 through December 2006. (b) Time series
of daily global absorbed solar power (0 to 175 nm) and
radiated infrared (IR) power (CO; plus NO) in the
thermosphere from January 2002 through December 2006.

Mlynczak et al., 2008



The Atmospheric Radiative Power Increases During High Speed Stream Intervals
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These effects occur at auroral latitudes, as expected



