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Superconducting nanowire single-photon
detectors (SNSPDs)

Basic operating principle

R ALA)

1 An SNSPD consists of a When a photon
current-biased super- hits the wire, it
conducting wire in parallel creates a hotspot,
with a readout circuit. suppressing the

N superconductivity

in a small region
of the wire.

With the current through
the nanowire reduced, the
hotspot cools off, returning the
wire to its original state.

The current flowing
through the resistive
region heats the
nanowire and the
hotspot grows.

The hotspot can eventually create
10s of kOhms of resistance in the
wire. The current is redirected
through the measurement circuit,
creating a detectable voltage pulse.

After Gol'tsman et al. (2001)
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Properties of a single-photon counting detector
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Properties of a single-photon counting detector
SNSPD performance
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Previous state of the art jitter
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Table 1. Reported Device Characteristics and Jitter Measurements

Switching Rising Time Optical Maximum Rising System Jitter

Current (pA)“ (ps) Coupling Amplifier Edge Slope (mV/ps)l' (ps) Reference
24-30 100 free space 40 db gain, 18 GHz, RT" 1.1 18 MSPU 2005
24-30 250 SMEF? 4 GHz, RT - 37 MSPU 2007
24-30 - MMF* 4 GHz, RT - 58 MSPU 2007
44.5 469 SMF 20 db gain, 4 GHz, RT 0.57 24.5 Nanjing 2011
17.0 514 SMEF 20 db gain, 4 GHz, RT 0.15 37.6 Nanjing 2011
28 250 waveguide Picosecond Labs 5828, RT 1.8 18.4 Yale 2012
70 700 SMF RF Bay LNA 650, RT 1.6 18 SIMIT 2013
45 - SMF 40 db gain, RT - 17.8 MSPU 2016
- - SMF operating at 30 K - 14.80 Single Quantum 2016

« Time resolution below ~10 ps has been very difficult to achieve
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Contributions to timing jitter in SNSPDs
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Investigations of intrinsic jitter
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- Short nano-bridge to limit the geometric * Photon energy dependence of jitter and
contribution. latency indicates presence of intrinsic

- Study of fundamental limits. effects due to detection mechanism.

Paul Hale Galan Moody
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I I I I N H Marty Stevens Rich Mirin
Travis Autry Sae Woo Nam
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Ultra high time resolution

Jitter (ps)
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* Record time resolution for free-running
single photon detector: 2.7 ps

* Photon energy dependence indicates
presence of intrinsic effects due to
detection mechanism.
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Improved impedance matching
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« Large kinetic inductance of nanowires
reduces the rise time.
* Nanowire impedance is mismatched to
the readout lines.
« Adiabatically tapered wire width.
* Impedance matching.
* Maintains a fast rise time.
* Increases the signal.

Calandri et al, Appl. Phys. Lett. 109, 152601 (2016)
Zhao et al, Nat. Photonics 11, 247 (2017)
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Improved impedance matching

Simulation Experiment: NbN
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Temporal Jitter (ps)
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WSi jitter
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Summary

» For applications needing ultra-high
time resolution, we are beginning to
test the fundamental limits of SNSPD

jitter I _
- Adiabatic tapers can improve signal ..
to noise ratio
- Improved noise contribution to jitter "
- Maximum count rate will be reduced .| . Width = 160
due to larger kinetic inductance ot J e

Delay (ps)

* Provides path toward large area, low
jitter devices
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