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* Interested in formations of small satellites
capable of precise on-orbit control with
minimal fuel usage

* Fuel can be spenton:

— Driving the true system to a predicted
path in Guidance

— Navigation errors which pass thru the
control law to impact accuracy and fuel
consumption

* Previous research found relative velocity
error to be the driving factor in fuel usage
and control accuracy.
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Objective: Examine strategies to improve
on-board navigation without raising
computational costs.
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JR!- Started Asking Questions:
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« Whatare the driving factors in velocity estimation error?

« How does the choice of estimation architecture impact performance?
— Choice of absolute or relative states?

— When do ‘relative-only’ methods which assume Leader position break
down?

 Whendo linearization errors become important? How do they compare to
measurement errors?

— How do leader-linearized formations assuming HCW break down even at small
separation distances?

:> Lead down two main paths...
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1. Linear KF vs. Extended KF

— EKF provides an easy mechanism to minimize error by self-linearizing the
nonlinear system about the most recent state.

— EKF is a full state estimator. However, at the core, the algorithm finds the small
change in state relative to the previous (or nominal) state.

— Capabilities of the KF are lost when the EKF obscures the linearized system
and nominal state.

Can the small — or incremental — state and associated linear
system be leveraged to better incorporate measurement data?

2. Linearization Errors
— The EKF must still linearize the system about a known operating point.
— When do these errors dominate measurement error?

— When do strategies that use ‘relative-only’ state representations (where the
Leader’s absolute position is assumed known) break down?
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1. Incremental State Architecture
— Methodology
— Case Study

2. Example: 2 spacecraftusing GPS (absolute and carrier-difference)

3. Numerical Analysis
— Linearization and measurement error sensitivity
— Absolute-Relative state coupling errors and observability

4. Conclusions and Future Work
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JR!- Motivating Concept
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 (Generalize the “re-linearization”
concept used in most Extended
Kalman Filters 5; Pij

* Consider small “incremental” states / R
that relate a nominal to the truth ril Pij

— For EKFs, this nominal is the past e
estimate /

— Ideally very small, such that the s/ T -
state/measurement dynamics are / g
linear / -

* Incremental description makes clear g
the points of linearization, allows the
selection of “better” nominal

* Presents a standard way of selecting
states, folding in measurements




-'R!- Incremental States and Dynamics
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« Estimate the small “incremental” states §; such that
T = fi + 61'

=1+ 9

« Considerthe increments as representing nearby relative orbits obeying the
same dynamics as the reference orbit (7%):

51 -
x:[(gl.]i 0 = —— . 3 (i +6;) + ~,u
J |17 + & |17:]

|3 () = f(6;,7;)

Note: The relative dynamics between a spacecraft and its nominal
trajectory (¥;, 8;) are the same as when the 2"d spacecraft is
defined about a known leader (r;, p;;)

« The partials of this expression with respect to the increment are:

Of U founT =2 N 0 I
%, S (BRF =% =Fyp(7) > Fi = [va 0]



JR!- Incremental Dynamics ||
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 Whenthe dynamics of the absolute (incremental) state is used, the
resulting matrix of partials for a two-spacecraft system of incrementsiis:

B [Fi () 0 ]

Lo FE@

« True dynamics are decoupled! But we care about the relative dynamics.
Apply a similarity transform T:

HUNEEE o
5; 5;
o [5]-]; Z Tx~= [pij] S %j >
JRET— [ Fi (1) 0 ]
CORIOWI

* Resultsin absolute §; dynamics and coupled relative §p;; dynamics

In the incremental domain (small scale /linear) we can leverage
the power of linear algebra to manipulate states and incorporate
either absolute or relative measurements




JR!- Basic Case Study
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« Considera 2D system with simple dynamics and relative-only

measurements:
F11 ]
X = = H =
X [ Fiol”
« Covariance update from measurements due Wlth an |n|tial diagonal
covariance:

P, =HP,_H" +R
B 1 1 0] -1 -1
[ p[1 e
p, = 2p 229

« If R is small, P, can become singular, causing numerical issues during
Kalman gain computation

Detailing this problem further to highlightthe incremental state
IS the topic of a second paper in development
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JR!- 2 Spacecraft Example: CDGPS

California Institute of Technology

A
 New state vector: 5
-8 Pij
é; : O;
_ _ J
* = \6py; O
6P ]

* Restate the measurement model and its partials in terms of the new
Incremental state vector:

of = ||[rEps — @ + 8)| + wi
A = ||rps — (F; + 8)|| = [IrEps — (Fi + 8; + By + 8pyj) || + wiy

Measurement partials for relative states couple into the absolute states:
Hy = [LOS;, Opyxo]
HAd) — [(LOSl - LOS]), ONX3 ,LOSJ, ONX3 ]
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JPPL..,OL Initial Conditions + Assumptions
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LEO, eccentric orbits

Filter dynamic, measurement models are used for truth

— Unrealistic, but lets us compare “apples to apples”
— Also ensures that we know which KF assumptions we're violating

Only examined leader-follower along-track formations

Applicable to high precision applications with precise measurements
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-'R!- Linearization Sensitivity Analysis |l
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* Incremental linearization scheme is essentially invariant to the formation
baseline

 Measurement model still degrades, but more slowly than LL case
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Dynamic linearization error is insensitive to baseline! Measurement lin. Error scales more slowly w/ baseline
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Desirable to understand the benefits of
absolute+relative estimation

Extremely high precision relative
measurements (Ryy = 1 * 10~°m), coarse

absolute measurements (Ry = 1 * 1073m)

Add a scaled random vector to the “truth” to
generate nominal position, velocity:

To=1y+ KW,

Comparable performance at small values of
K

IKF w/o absolute states degrades log-
linearly with disturbance magnitude
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JPL Nominal Error Sensitivity Analysis |l
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* Pre- and post-fit residuals show divergence due to dynamic coupling

« Could “fix" this by inflating process/measurement noise, but degraded
accuracy is present regardless
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JR!- Observability Analysis
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« Want to understand state observability given ONLY relative measurements. Use
information matrix over the window of M points:

M
We =) ®Ctw, t)TH R Hi(tu, 1)
i=M—k
* Results:
1. Absolute measurements are required for full observability

2. Some observability in the absolute states is provided by relative-only
measurements
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« Partial observability from relative measurements
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IS consistent w/ literature.

— Full observability can be had if J2

Grammian Rank
= =

| I-KF w/ abs. meas. |
I-KF w/o abs. meas.
-------- Full Observability

dynamics are considered
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— Other sources of coupling in relative measurements
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can provide absolute information, such as inertial
bearing from one spacecraft to another



SR Conclusions and Future Work
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« Linearization error and absolute/relative coupling are important to consider
for future navigation filters

« Good practice for all formation flyers, but especially missions that have
very high-precision measurements available

* Need to examine filter performance with realistic disturbance and sensor
models
— Other biases might wash out performance gains
— CDGPS errors from broadcast ephemeris can wash out other gains
— Inter-spacecraft ranging, angles-based measurement models highly relevant

* Also need to look at performance with more than two spacecraft

— Can play games with similarity transforms while incorporating absolute or
relative measurements

— Can these be “optimally” sequenced?
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JPL Prior Work (LL-KF)

California Institute of Technology

« Carrier-Differential GPS filter for on-board use from Alfriend et. al.
» Meter-level positioning for a two-craft formation
« Assumed state, dynamics:

- v
5 (Fi + pij) +— 5 (7))
17l

Pul™ 7 + oy

« CDGPS measurement model from the k" GPS satellite:
A‘szj = [|rEps — 7l = [|[76ps — (7 + Pij)” + WIA(qb

Issue #1: Dynamics and measurement model depend on absolute position,
which is not estimated by the filter!

Issue #2: Linearizes follower motion about the leader, degrading estimate
accuracy over large separation distances




