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Radiation Environment of Europa

> . A

Electrons Reaching Europa’s Surface: Trailing (colored)
Hemisphere: <25 MeV; Leading Hemisphere: >25 MeV
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Composition of Europa

-Interior Ocean/lce Compositio
-Near-Surface Composition

-Surface Composition (Spectral skln depth)
-Exosphere Composition
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Surface Properties of Europa

-

Surface hardness and topography dictate
future explorations involving lander and drilling
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Europa — Surface & Radiation

A

Surface — upper few millimeters

« Leading Hemisphere Surface — Ice Abundant

« Trailing Hemisphere Surface — Ice Depleted

Surface — upper few meters and below

Frequency of upwelling/renewing the surface - Unknown.
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Europa Radiation Environment

-

Particle Flux (cm?s-sr-keV)™!

Particle Flux (cmzs-sr-keV)'1

Europa (E4)

1 IIIlIId L IIIII'I‘ 1Lt

10SF - & (DG-83)

wal

ol Ll il

107
' 102 100 100 10° 100 102 100 10* 100

Energy (keV) Energy (keV) Energy (keV)
Galileo Orbiter measurements of energetic ions (20 keV to 100 MeV) and electrons (20—700 keV)
in Jupiter’s magnetosphere are used in conjunction with the JPL electron model (<40 MeV) to
compute irradiation effects in the surface layers of Europa, Ganymede, and Callisto. Significant
elemental modifications are produced on unshielded surfaces to approximately centimeter depths
in times of 106 years, whereas micrometer depths on Europa are fully processed in <10 years.

John Cooper et al. Icarus (2001)
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Mocfellng Radiation Environment of Europa

P . e 2y, il Q-"
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Sulfur Oxygen Protons Electrons Bremsstrahlung
+ Bremsstrahlung)
1.E+01 {
- n 2 = £ o
A Chemical Modification
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L
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Depth in water ice (mm)
@ Plot from: Paranicas et al. (2002)
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ectron Impact on Matter:
- Primary and Secondary Radiation
Pl R Cema .

Secondary
Photons
(X-ray to UV)

Radiation Protected

Secondary
Electrons (e7)

Tertiary
@ Electrons (e7)
9
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== IMPORTANT: These numbers are 50% Probability (cutoff) #

.

Patterson et al. 2012) 286-290
" ' Trailing- - Leading |» e
: e{t}is here . _Hemispherg ™ |- 1

,_,,‘_,’ - - ,.‘.;:;_. E e - 2.
"’;,""‘ PPN O e 15 e ;:
B A 7 V
".‘-‘r eV Aﬂ, ;
3 S EA T
.2 8 V7~ p g™

. (Y T

10 MeV| , P

ey

U o MeV:T |

100 keV ~140 um; 1 MeV ~4.4 mm; 10 MeV ~ 5 cm
Bremsstrahlung penetrates ~20 times deeper
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41 1lo Sigmoidal not a Delta Function

600 Electron penetration
Into ice is a statistical

g 1200
o phenomenon — that can
£ B be approximated by a
3 ! sigmoidal equation
10 keV electrons L L - 2400 240 (prObabIIIty)
Density 0.9g/cm? 1
1800 900 O(m) 900 1800 | 3000
CASINO simulations for penetration T A] — A2
paths of 10 keV electrons through 0 50 100 y = + A2
ice of 0.9 g/cm3 % electrons penetrating 1 + e (x—x0)/dx

Penetration depths must have percentile qualifier.
The default is 50% of the particles (electrons).
The rest of the 50% make to further depths.
@ e.g.: 50% of 25 MeV electrons penetrate deeper than 12 cm
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100 keV 1 MeV 10 MeV

| Electrons: ~140 um ~4.4 mm ~5cm
X-rays: ~15cm ~30 cm ~100 cm

100 cm 1071

i
10 cm 10'; >,/ |
. 10° ‘ |
10 cm penetration: -
z
20 MeV electrons or S 1073
90 keV X-rays g
© 1074
100 cm penetration: 10°3 lecions
1000 MeV electrons or 10_41
1 | | | | |
= 3 — Water X- 90% att tion depth (¢m)
10 MeV X-rays ;. T Water electfon CSDA dépth (cm) |
10° -
10° 10° 10" 10° 10’ 10°
Electron/X-ray Energy (MeV)
@ Electrons: http://physics.nist.gov/PhysRefData/Star/Text ESTAR.html
% X-rays: http://www.nist.gov/pmli/data/xraycoef/index.cfm 12
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ESTAR Electron Penetration Depth (cm)
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3 Q“'¢‘
g '. w\f

-..M,g .GEANT Simulation of 30 MeV Primary Electron yields

J.M—, Y~

== of Secondary Electrons and Bremsstrahlung (X-rays)
at various Depths through Ice

14 A —&— Primary Electrons Current
' —@— Secondary Electrons Current
Bremsstrahlung Current

1.2

= X-rays continue penetrating

= . deeper into the ice surface

= ] beyond the reach of primary and
0 08 \\ secondary electrons.

S 06

lce Depth (cm)

15
© 2018 California Institute of Technology. Government sponsorship acknowledged.




Modeling Studies were based on:
Liquid water and other non-ice targets.

Energies different from Europa’s surface.

Extrapolations were done to estimate under Europa’s conditions.

Until We Started Our Laboratory Studies
At the Ice Spectroscopy Lab (ISL) of JPL

16
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Electron Flux
@ Europa
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ICE HEART @ ISL

>

-"

(lce Chamber for Europa’s High-Energy

Electron And Radiation-Environment Testing)

Varuable Length lce Sample Compartment

Ice Cold
N,
O-ring ,,'\ 9 gas

seal

-——-———————--———-—---“--—‘
I g — el S

e - _{
beam
"-r-\----_‘:.':::.- .-;:-:.-.;:.::-..':.:-.’_".z.--..
l Gaskets ;
H
Sapphire
-ra
etec r

Electron Window
Detector coated with
PAH/Ice inside

- - -
Electrons X-rays
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Outer Telescope with
vacuum seal O-rings.

Inner 2.5-inch diameter
tube for water ice frozen
in the tube or loaded as
crushed powder.

Insulated for 100 K operation
Using liquid nitrogen cooling.

19
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"eﬁc.:tron Sources Cover 300 keV to 28 MeV
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ICE-HEART in Action @ NIST

’,
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'ICESHEART Crew in Action @ NIST MIRF

@ High-Radiation Environment
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How to Quantify Bremsstrahlung (X-rays)?
= /. By Removing Segondary Electrons

5kG Halbach Cyllndrlcal Magnet @ 80 K
Deflecting Primary and Secondary Electrons Enables
Quantification of X-ray Yields and Penetration Depths

e | ) L
| v
In-line No magnet Faraday cup In-line Faraday cup
detector A il UV detector detector delector

Firstice  Magnet Second Ice
Column Section Column
Above: typical secondary particle generation in l Sem(2°) 15cm(67)  Variable Length

the ICE-HEART when high energy electrons
impinge upon ice with no magnet.

Right: Inserting a strong SmCo magnet (5
kGauss) into the chamber causes electrons to

be deflected to the side, so that they no longer
impinge upon the detector.
) 23
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1 Reflection Absorption : Fluorescence

Reflection Absorption
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¢ .Secondary Electrons vs. X-rays

First JPL-NIST MIRF Data for 10 MeV Primary Electrons
bombarding 5 cm thick ice targets at 100 K
Simulating Europa’s Surface Radiation Damage of Organics
Critical for Future Lander Missions & Surface Habitability
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pa IcerAnalogs (10 cm) with NaCl & MgSO,

Secondary Electrons Bremsstrahlung
10 cm ice with magnet
10 105 Mey —=-0sdemsred ] [T
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Europa Surface Hardness

A

28
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ng Sdrface Hardness of Irradiated Sample
Choice: Rebound methods (e.g. Leeb Hardess)

Works Horizontal or Vertical

P Hardness Leeb
? / HL = 1000 BfA
A
¢ Time
: /—
v

Before Impact_... After Impact S
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Impact body

Magnet
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II"IF!
carbid ball

h
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@
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E,u = mgh, E..=mv32 E, =mv32 E . =mgh,
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Hardness Scale — Leeb vs. Moh’s
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« Salt-rich ices are harder than pure water ices
+ MgSO,-containing ices are the hardest.

* Lower the Temperature, Higher the Hardness
« Exact salt concentration (25% or 50%) has no significant effect

Pure H,O Ice NaCl:H,0 Ice

MgSO,:H,0 Ice

-

Leeb Hardness (HL)

© 2018 California Institute of Technology. Government sponsorship acknowledged.
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“ atloﬁ-lnduced changes in Leeb Hardness

Radiation- Softenlng Occurred in All Ice Analogss P

Effect of MeV electrons
on Leeb Hardness

B Before irradiation W After irradiation

Physical Changes: 600
- Crystallinity 2 500
- Grain-Size and Boundaries gdoo

£ 100
Chemical Changes: =
- lonization e
- Dissociation = 100
- Diffusion of Atoms/lons 0

H20 50:50 MgS04:H20

Bombardment at 90 K with 10.5-25 MeV electrons. Dose for the 50:50 MgSO,:H,0
sample was 6x10'® MeV cm and for H,O was 8x10'® MeV cm-2

Error bars represent one standard deviation of the measured values.
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Conclusions & Future Work

> . A

BT ems

Conclusions

Secondary Photons (Bremsstrahlung) penetrate deeper (up to 1m) on
trailing hemisphere of Europa (close to the equator).

Bremsstrahlung damage to organics is NOT INSIGNIFICANT (~20%)
Secondary Electron Yields are HIGH in Salts (vs. pure ice)
Bremsstrahlung Yields are LOW in Salts (vs. pure ice)

Surface composition of Europa would be dictated by the altitude
dependent geological activity. Geologically inactive regions are expected
to be heavily processed.

Trailing hemisphere of Europa is expected to be radiation-softened, but
still much harder than pure water-ice, particularly should MgSO, were to
present..
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Future Work & Acknowledgments

o

BT ems

« Systematic Data on Wide Range of Europa

Surface Analogs (Including Sulfuric Acid Hydrates)
* Quantification of Secondary X-rays and their Yields
* Quantification of X-ray damage to Organics

Thank You for Your Time!

~unding:
JPL R&TD Funds
JPL Technology Enabling Funds
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The END
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